描述
Description
设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(treenetwork),其中V, E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a,b)表示以a,b为端点的路径的长度,它是该路径上各边长度之和。我们称d(a,b)为a,b两结点间的距离。 一点v到一条路径P的距离为该点与P上的最近的结点的距离: d(v,P)=min{d(v,u),u为路径P上的结点}。 树网的直径:树网中最长的路径称为树网的直径。对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。 偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即 。 任务:对于给定的树网T=(V, E,W)和非负整数s,求一个路径F,它是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。我们称这个路径为树网T=(V,E,W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。 下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定s=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8。如果指定s=0(或s=1、s=2),则树网的核为结点F,偏心距为12。
Input
包含n行: 第1行,两个正整数n和s,中间用一个空格隔开。其中n为树网结点的个数,s为树网的核的长度的上界。设结点编号依次为1, 2, …, n。 从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。 所给的数据都是正确的,不必检验。
Output
只有一个非负整数,为指定意义下的最小偏心距。
Sample Input
5 2
1 2 5
2 3 2
2 4 4
2 5 3
Sample Output
5
HINT
对于70%的数据,n<=200000
对于100%的数据:n<=500000, s< 2^31, 所有权值< 500
题目大意
求一棵树的直径上一段不超过S长的链,使得偏心距最小。
性质
①树的直径不唯一,但所有直径必定相交,并且各直径的中点汇聚于同一处
②所有的直径是等价的,在任意一条直径上求出的最小偏心距都相等
③在树网的核的一端p固定后,另一端q在距离不超过s的前提下越远越好
④直径最长性:从u,p之间分叉离开直径的子树最远点与p的距离不会比u更远
⑤对于树中的任意一点,距离其最远的点一定是树的直径的某一端点
思路
两次DFS求树的直径
设直径上的节点为u1,u2,…,ut,
先把这t个节点标记为“已访问”,
然后通过DFS,
求出d[ui],表示从ui出发不经过直径上的其他节点能够到达的最远点的距离
以ui,uj(i<=j)为端点的树网的核的偏心距就是:
根据直径的最长性,
max1<=k<=i−1 {d[uk]}
max
1
<=
k
<=
i
−
1
{
d
[
u
k
]
}
一定小于
dist(u1,ui)
d
i
s
t
(
u
1
,
u
i
)
maxj+1<=k<=t {d[uk]}
max
j
+
1
<=
k
<=
t
{
d
[
u
k
]
}
一定小于
dist(uj,ut)
d
i
s
t
(
u
j
,
u
t
)
上式实际上可简化为:
max(max1<=k<=t {d[uk]})
m
a
x
(
max
1
<=
k
<=
t
{
d
[
u
k
]
}
)
对于ui,uj来说是一个定值,
所以我们枚举直径上的每个点ui,
同时uj在距离不超过s的前提下,
每次沿着直径向后移动
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=500010;
int n,s,x,y,z,tot,head[maxn],d[maxn],p,q,f[maxn],ans=1e9;
bool b[maxn];
struct atree
{
int y,v,next;
}
a[maxn<<1];
inline int read()
{
int num=0,flag=1;
char c=getchar();
for (;c<'0'||c>'9';c=getchar())
if (c=='-') flag=-1;
for (;c>='0'&&c<='9';c=getchar())
num=(num<<3)+(num<<1)+c-48;
return num*flag;
}
void add(int x,int y,int z)
{
a[++tot].y=y;
a[tot].v=z;
a[tot].next=head[x];
head[x]=tot;
}
void init()
{
n=read();
s=read();//s为树网的核的长度的上界
for (int i=1;i<n;++i)
{
x=read();
y=read();
z=read();
add(x,y,z);
add(y,x,z);
}
}
void dfs(int x,int fa)
{
f[x]=fa;//f[x]表示x的父亲为fa
for (int i=head[x];i;i=a[i].next)
{
int y=a[i].y;
if (y==fa||b[y]) continue;//如果该点为直径上的点,不再继续
d[y]=d[x]+a[i].v;
dfs(y,x);
}
}
void getd()
{
dfs(1,0);//从任意一个节点出发DFS
for (int i=1;i<=n;++i)
if (d[i]>d[p]) p=i;//求出与出发点距离最远的节点,记为p
d[p]=0;
dfs(p,0);//从节点p出发DFS
for (int i=1;i<=n;++i)
if (d[i]>d[q]) q=i;//求出与p距离最远的节点,记为q
}
void work()
{
for (int i=q,j=q;i;i=f[i])//枚举直径上的每个点i
{
while (f[j]&&d[i]-d[f[j]]<=s) j=f[j];//j在距离不超过s的前提下沿着直径向后移动
ans=min(ans,max(d[j],d[q]-d[i]));//比较两端点和直径端点的长度
}
for (int i=q;i;i=f[i])
b[i]=true;//由于要找出不经过直径的最大深度,所以禁止访问直径上的点
for (int i=q;i;i=f[i])
{
d[i]=0;
dfs(i,f[i]);//这里i的父亲必须传进去f[i],否则就修改了直径
}
for (int i=1;i<=n;++i)
ans=max(ans,d[i]);//d[i]表示从i出发,不经过直径上的其他节点,能够到达的最远点的距离
printf("%d\n",ans);
}
int main()
{
freopen("test.in","r",stdin);
freopen("test.out","w",stdout);
init();
getd();//两次DFS求树的直径
work();
fclose(stdin);
fclose(stdout);
return 0;
}