试题请参见: http://acm.hdu.edu.cn/showproblem.php?pid=1015
题目概述
=== Op tech briefing, 2002/11/02 06:42 CST ===
“The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; most of them, along with Klein and his factory, were destroyed in World War II. Fortunately old Brumbaugh from research knew Klein’s secrets and wrote them down before he died. A Klein safe has two distinguishing features: a combination lock that uses letters instead of numbers, and an engraved quotation on the door. A Klein quotation always contains between five and twelve distinct uppercase letters, usually at the beginning of sentences, and mentions one or more numbers. Five of the uppercase letters form the combination that opens the safe. By combining the digits from all the numbers in the appropriate way you get a numeric target. (The details of constructing the target number are classified.) To find the combination you must select five letters v, w, x, y, and z that satisfy the following equation, where each letter is replaced by its ordinal position in the alphabet (A=1, B=2, …, Z=26). The combination is then vwxyz. If there is more than one solution then the combination is the one that is lexicographically greatest, i.e., the one that would appear last in a dictionary.”
v - w^2 + x^3 - y^4 + z^5 = target
“For example, given target 1 and letter set ABCDEFGHIJKL, one possible solution is FIECB, since 6 - 9^2 + 5^3 - 3^4 + 2^5 = 1. There are actually several solutions in this case, and the combination turns out to be LKEBA. Klein thought it was safe to encode the combination within the engraving, because it could take months of effort to try all the possibilities even if you knew the secret. But of course computers didn’t exist then.”
=== Op tech directive, computer division, 2002/11/02 12:30 CST ===
“Develop a program to find Klein combinations in preparation for field deployment. Use standard test methodology as per departmental regulations. Input consists of one or more lines containing a positive integer target less than twelve million, a space, then at least five and at most twelve distinct uppercase letters. The last line will contain a target of zero and the letters END; this signals the end of the input. For each line output the Klein combination, break ties with lexicographic order, or ‘no solution’ if there is no correct combination. Use the exact format shown below.”
题意是说将ABCD…Z映射成1, 2, 3, …, 26. 给出一个目标数值(target), 和一组字符序列. 问该序列中的字母(对应的数值分别为v, w, x, y, z)能否选取5个数使得v - w^2 + x^3 - y^4 + z^5 = target
.
对了, 若有多组符合条件的v, w, x, y, z, 输出字典序最后的一组.
解题思路
感觉暴力搜索就可以, 因此写DFS就没有太大的意义. 试了一下果然不超时.
既然要求输出字典序最后的一组, 那就直接倒过来搜索就可以了. :)
源代码
#include <iostream>
#include <string>
#include <sstream>
#include <algorithm>
bool compareTo(const char& a, const char& b) {
if( a > b ) {
return true;
} else {
return false;
}
}
std::string getSolution(int target, const std::string& alphabet) {
for ( int i = 0; i < alphabet.size(); ++ i ) {
for ( int j = 0; j < alphabet.size(); ++ j ) {
for ( int k = 0; k < alphabet.size(); ++ k ) {
for ( int m = 0; m < alphabet.size(); ++ m ) {
for ( int n = 0; n < alphabet.size(); ++ n ) {
if ( i != j && i != k && i !=m && i != n && j !=k && j != m && j != n && k != m && k != n && m !=n ) {
int v = alphabet[i] - 'A' + 1;
int w = alphabet[j] - 'A' + 1;
int x = alphabet[k] - 'A' + 1;
int y = alphabet[m] - 'A' + 1;
int z = alphabet[n] - 'A' + 1;
if ( v - w * w + x * x * x - y * y * y * y + z * z * z * z * z == target ) {
std::ostringstream ss;
ss << alphabet[i] << alphabet[j] << alphabet[k] << alphabet[m] << alphabet[n];
return ss.str();
}
}
}
}
}
}
}
return "no solution";
}
int main() {
int target = 0;
std::string alphabet;
while ( std::cin >> target >> alphabet ) {
if ( target == 0 && alphabet == "END" ) {
break;
}
std::sort(alphabet.begin(), alphabet.end(), compareTo);
std::cout << getSolution(target, alphabet) << std::endl;
}
return 0;
}