CV小白成长记之一:去除图片背景印记及噪点

本文介绍了如何使用数字图像处理技术去除图片背景印记和噪点。通过将图片转换为灰度图,应用Otsu二值化方法区分前景和背景,再利用形态学的膨胀、腐蚀、开闭运算以及连通域处理,有效去除黑色噪点,实现了图像的清晰化处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 问题描述(一):
    在这里插入图片描述
    运用图像处理的方法去除上图中背景黑色字印记。

  • 问题的分析与解决(一):

    拿到这个问题,作为一个图像处理的小白,第一反应是能不能像使用PS一样,把这张RGB的图片转化为ARGB的图片。接着,把其中背景的Alpha通道设置为0,即将背景设置为全透明,这样便提取出了前景。然后,新建一个白色的画布将前景放上去,就处理得到了一张背景纯白的图片。

    转念一想,如何将前景和背景区分出来才是关键,要不然就是对全图调整透明度,无法达到预期效果。

    我们知道,在图像处理中,大多都使用灰度图。在RGB模型中,假设R=G=B时,则彩色表示一种灰度颜色,当中R=G=B的值叫灰度值,因此,灰度图像每一个像素仅仅需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255。灰度是指只含亮度信息,不含色彩信息的图像。黑白照片就是灰度图,特点是亮度由暗到明,变化是连续的。要表示灰度图,就需要把亮度值进行量化。之所以都使用灰度图,是因为灰度图有以下好处:

    1. RGB的值都一样。
    2. 图像数据即调色板索引值,就是实际的RGB值,也就是亮度值。
    3. 因为是256色调色板,所以图像数据中一个字节代表一个像素ÿ
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值