链接:https://www.nowcoder.com/questionTerminal/27f3672f17f94a289f3de86b69f8a25b
来源:牛客网
[编程题]堆棋子
- 热度指数:2256时间限制:1秒空间限制:32768K
- 算法知识视频讲解
小易将n个棋子摆放在一张无限大的棋盘上。第i个棋子放在第x[i]行y[i]列。同一个格子允许放置多个棋子。每一次操作小易可以把一个棋子拿起并将其移动到原格子的上、下、左、右的任意一个格子中。小易想知道要让棋盘上出现有一个格子中至少有i(1 ≤ i ≤ n)个棋子所需要的最少操作次数.
输入描述:
输入包括三行,第一行一个整数n(1 ≤ n ≤ 50),表示棋子的个数 第二行为n个棋子的横坐标x[i](1 ≤ x[i] ≤ 10^9) 第三行为n个棋子的纵坐标y[i](1 ≤ y[i] ≤ 10^9)
输出描述:
输出n个整数,第i个表示棋盘上有一个格子至少有i个棋子所需要的操作数,以空格分割。行末无空格 如样例所示: 对于1个棋子: 不需要操作 对于2个棋子: 将前两个棋子放在(1, 1)中 对于3个棋子: 将前三个棋子放在(2, 1)中 对于4个棋子: 将所有棋子都放在(3, 1)中
示例1
输入
4 1 2 4 9 1 1 1 1
输出
0 1 3 10
package go.jacob.day813;
import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Scanner;
/**
* 网易2017年内推校招 [编程题]堆棋子
*
* @author Jacob
*
*/
public class Demo7 {
/*
* 暴力解法 该解法为 @蟹粉馅大糖包 首创
* 思路:最后关键的棋子的横坐标和纵坐标肯定是出现过的横坐标和纵坐标
* 举个栗子:输入为
* 4
* 1 2 4 9
* 1 1 1 1
*
* 那么最后关键棋子的横坐标必然是1,2,4,9中的一个,纵坐标必然是1
*
*
* 证明可以参考@蟹粉馅大糖包 的反证法,如下:
* xy轴其实是独立的,先只考虑x坐标,假设把k个棋子堆到x0格子所用的步骤最少,
* a个棋子初始在x0的左边,b个棋子初始在x0的右边,且a>b,那么必然存在横坐标为x0-1的格子,
* 这k个棋子到x0-1的步数会更少,b>a的情况,那么x0+1的目标将比x0更优,
* 至于a=b,x0-1 和x0的步数是一样的。
* 因此,最终汇聚棋子的x坐标只要在棋子初始的x个坐标中考虑
*/
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] x = new int[n];
int[] y = new int[n];
for (int i = 0; i < n; i++)
x[i] = sc.nextInt();
for (int i = 0; i < n; i++)
y[i] = sc.nextInt();
sc.close();
StringBuilder sb = new StringBuilder();
sb.append(0);
for (int k = 2; k <= n; k++) {
int sum = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int tmpSum = 0;
PriorityQueue<Integer> heap = new PriorityQueue<Integer>(k, new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
});
for (int a = 0; a < n; a++) {
int distance = Math.abs(x[a] - x[i]) + Math.abs(y[a] - y[j]);
tmpSum += distance;
heap.add(distance);
if (heap.size() > k) {
tmpSum -= heap.poll();
}
}
sum = Math.min(sum, tmpSum);
}
}
sb.append(" " + sum);
}
System.out.println(sb.toString());
}
}