网易2017内推 [编程题]堆棋子@Java


链接:https://www.nowcoder.com/questionTerminal/27f3672f17f94a289f3de86b69f8a25b
来源:牛客网

[编程题]堆棋子
小易将n个棋子摆放在一张无限大的棋盘上。第i个棋子放在第x[i]行y[i]列。同一个格子允许放置多个棋子。每一次操作小易可以把一个棋子拿起并将其移动到原格子的上、下、左、右的任意一个格子中。小易想知道要让棋盘上出现有一个格子中至少有i(1 ≤ i ≤ n)个棋子所需要的最少操作次数.

输入描述:
输入包括三行,第一行一个整数n(1 ≤ n ≤ 50),表示棋子的个数
第二行为n个棋子的横坐标x[i](1 ≤ x[i] ≤ 10^9)
第三行为n个棋子的纵坐标y[i](1 ≤ y[i] ≤ 10^9)


输出描述:
输出n个整数,第i个表示棋盘上有一个格子至少有i个棋子所需要的操作数,以空格分割。行末无空格

如样例所示:
对于1个棋子: 不需要操作
对于2个棋子: 将前两个棋子放在(1, 1)中
对于3个棋子: 将前三个棋子放在(2, 1)中
对于4个棋子: 将所有棋子都放在(3, 1)中
示例1

输入

4
1 2 4 9
1 1 1 1

输出

0 1 3 10



package go.jacob.day813;

import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Scanner;

/**
 * 网易2017年内推校招 [编程题]堆棋子
 * 
 * @author Jacob
 *
 */
public class Demo7 {
	/*
	 * 暴力解法 该解法为 @蟹粉馅大糖包 首创 
	 * 思路:最后关键的棋子的横坐标和纵坐标肯定是出现过的横坐标和纵坐标 
	 * 举个栗子:输入为
	 *  4 
	 *  1 2 4 9
	 *  1 1 1 1
	 * 
	 * 那么最后关键棋子的横坐标必然是1,2,4,9中的一个,纵坐标必然是1
	 * 
	 * 
	 * 证明可以参考@蟹粉馅大糖包 的反证法,如下:
	 *  xy轴其实是独立的,先只考虑x坐标,假设把k个棋子堆到x0格子所用的步骤最少,
	 * a个棋子初始在x0的左边,b个棋子初始在x0的右边,且a>b,那么必然存在横坐标为x0-1的格子,
	 * 这k个棋子到x0-1的步数会更少,b>a的情况,那么x0+1的目标将比x0更优, 
	 * 至于a=b,x0-1 和x0的步数是一样的。
	 * 因此,最终汇聚棋子的x坐标只要在棋子初始的x个坐标中考虑
	 */
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();
		int[] x = new int[n];
		int[] y = new int[n];
		for (int i = 0; i < n; i++)
			x[i] = sc.nextInt();
		for (int i = 0; i < n; i++)
			y[i] = sc.nextInt();
		sc.close();
		StringBuilder sb = new StringBuilder();
		sb.append(0);
		for (int k = 2; k <= n; k++) {
			int sum = Integer.MAX_VALUE;
			for (int i = 0; i < n; i++) {
				for (int j = 0; j < n; j++) {
					int tmpSum = 0;
					PriorityQueue<Integer> heap = new PriorityQueue<Integer>(k, new Comparator<Integer>() {
						@Override
						public int compare(Integer o1, Integer o2) {
							return o2 - o1;
						}
					});
					for (int a = 0; a < n; a++) {
						int distance = Math.abs(x[a] - x[i]) + Math.abs(y[a] - y[j]);
						tmpSum += distance;

						heap.add(distance);
						if (heap.size() > k) {
							tmpSum -= heap.poll();
						}
					}
					sum = Math.min(sum, tmpSum);
				}
			}
			sb.append(" " + sum);
		}
		System.out.println(sb.toString());
	}
}



评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值