推荐算法
ZJKL_Silence
这个作者很懒,什么都没留下…
展开
-
Python 常用的库--推荐算法
1、numpy 科学计算和数据分析2、pandas 包含大量的库和数据模型。包含操作大型数据集的工具,DataFrame和Series两大数据结构3 、Jieba中文分词库,三种分词模式—精准模式,全模式,搜索引擎模式,支持繁体分词和自定义词典4、Json 轻量级的数据交换格式,就是Python中字典的数据格式,专门处理Json格式的数据库,有四种方法------dumps,dump,l...原创 2019-12-31 10:09:49 · 808 阅读 · 0 评论 -
将用户与物品相结合的CF
1、Collaborative Filtering and Deep Learning Based Recommendation System For Cold Start Items将冷启动问题CS,根据稀疏程度进一步划分CCS(稀疏性为100%)和ICS(稀疏性达到85%)(1)利用SDAE降噪自编码器训练评分矩阵,获取每个物品的特征(2)将获得物品特征融合到timeSVD++B、T...原创 2019-01-02 22:23:49 · 307 阅读 · 0 评论 -
推荐算法----指标系列
1、排序指标NDCG平均折损累积增益Normalized Discounted Cumulative Gain,即NDCG,常用于作为对rank的评价指标,当我们通过模型得出某些元素的ranking的时候,便可以通过NDCG来测评这个rank的准确度,同样的算法还包括MAP,MRR等https://blog.csdn.net/simple_the_best/article/details/5...转载 2019-02-25 16:40:07 · 686 阅读 · 0 评论 -
强化学习(二)-Actor-Critic
什么是 Actor-Critic (强化学习) - 知乎 https://zhuanlan.zhihu.com/p/25831658强化学习中的一种结合体 Actor Critic (演员评判家), 它合并了以值为基础 (比如 Q learning) 和 以动作概率为基础 (比如 Policy Gradients) 两类强化学习算法。Actor 的前生是 Policy Gradients ,...原创 2019-01-09 22:24:43 · 601 阅读 · 0 评论 -
Actor-Cric推荐算法
Deep Reinforcement Learning for List-wise RecommendationsList-wise推荐本文提的主要方法是捕获推荐物品之间的关系并产生一系列补充物品增强性能。结构的选择常见的DQN网络结构(a)(b)。(a)DQN输入为状态空间,输出所有动作的Q值。该结构适合于较多的动作空间而又较小的动作空间。缺点:不能处理大的动态空间的场景。(b)D...原创 2019-02-22 16:33:10 · 441 阅读 · 0 评论 -
强化学习中的问题--多臂赌博机与上下文赌博机
强化学习上图:多臂赌博机问题中,只有行动影响回报。中图:上下文赌博机问题中,状态和行动都影响回报。下图:完备强化学习问题中,行动影响状态,回报可能在时间上延迟。赌博机agent集中精力去学习对应的每种行动对应的回报,并保证我们总是选择最优的那些行动。在强化学习术语中,这叫做学习一个策略(Learn a policy)。(1)我们将使用一种称为策略梯度(policy gradient)的方...原创 2019-02-22 16:34:07 · 1550 阅读 · 0 评论 -
DRN: A Deep Reinforcement Learning Framework for News Recommendation学习
欢迎转载,请注明出处。本文提出了(基于深度Q-learning 的推荐框架)基于强化学习的推荐系统框架来解决三个问题:1)首先,使用DQN网络来有效建模新闻推荐的动态变化属性,DQN可以将短期回报和长期回报进行有效的模拟。2)将用户活跃度(activeness score)作为一种新的反馈信息,不仅仅考虑点击率作为回报。3)使用Dueling Bandit Gradient Descent...原创 2019-01-04 20:47:02 · 2458 阅读 · 1 评论