excel 开启数据分析工具库使用

本文详细介绍微软Excel在数据分析领域的应用,涵盖描述性统计分析、直方图、抽样分析、相关分析、回归分析、移动平均和指数平滑等核心功能。通过实例讲解如何利用Excel进行数据描述、相关性分析和预测建模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微软 excel 适用

目录

开启

描述性统计分析

直方图

抽样分析

相关分析

回归分析

简单线性回归

回归统计表

方差分析表

回归系数表

多重线性回归

移动平均

指数平滑


开启

【文件】【选项】【转到】

 

 

描述性统计分析

使用用户消费金额,来描述用户行为消费特征,分析了解用户消费分布

分组方式:指出输出数据展示是按列还是按行排列

标志位于第一行:没有勾选,这输出结果的列名以 列1,列2,列3 作为标志

汇总统计:包含平均值,标准误差,中位数,众数,标准差,方差,峰度,偏度,区域,最小值,最大值,求和,观测数等

置信区间:一般写为 90%,95%

第 K 大(小)值:表示输出数据组的第几位最大(小)值

表现数据集中趋势的指标有:平均值,中位数,众数

描述数据离散程度的指标有:方差与标准差

呈现数据分布形状的指标有:峰度系数与偏度系数

  • 峰度系数是描述对称分布曲线顶尖峭程度的指标,是相对于正太分布而言,峰度系数>0,两侧极端数据较少比正太分布更高更瘦,呈尖峭峰分布;峰度系数<0,表示两侧极端数据多,比正太分布更矮更胖,呈阔峰分布
  • 偏度系数是以正太分布为标准来描述数据对称性的指标,=0,分布对称;>0,频数分布的高峰向左偏移,称为正偏正太分布;<0,频数分布向右偏移,称为负偏正太分布

 

 

直方图

创建数据分组,,也可以不设置,excel 自动以数据的最大值及最小值之间的范围进行灯具分组

输入区域:数据源区域

接收区域(可选):组距数据区域

标志:勾选

输出区域:输出结果地方

柏拉图:勾选,则可以在输出列表中同时显示按降序排列的频率数据;若未勾选,则 excel 只输出按默认组距排列的频率数据

累计百分率:若勾选,则可以在输出表中添加一列累积百分比值,并同时在直方图表中添加绘制累积百分比的折线

图表输出:即绘制直方图 

【柏拉图】【累积百分比】都勾选

只勾选【柏拉图】

只勾选【累积百分率】

只能处理简单的计数分组

 

 

抽样分析

有规律抽取,周期性间隔抽取

标志:勾选

周期间隔:若选择间隔抽样,则需要输入周期间隔

随机抽样:直接输入样本,系统自行进行随机抽样

注意:是有放回抽取,即任何数值都有可能被多次抽取,针对这个我们可以多尝试几次

 

 

相关分析

正负号,正负相关,0<=r<=0.3 低度相关,0.3<=r<=0.8,中度相关,0.8<=r<=1,高度相关

CORREL 函数计算相关系数

 

 

回归分析

通过数据的相关性,可以构造确定的回归函数关系

线性回归主要步骤:

  1. 根据预测目标,确定自变量和因变量
  2. 绘制散点图,确定回归模型类型
  3. 估计模型参数,建立回归模型
  4. 对回归模型进行检测
  5. 利用回归模型进行预测

简单线性回归

也称一元回归,就是模型中只含有一个自变量:y=a+bx+c,c为 随机误差,即随机因素对因变量所产生的影响

因变量“推广费用”,自变量“销售额”预测第三季度销售额

绘制散点图

【插入】选择【仅带数据标记的散点图】,弹出一张空表,右键【选择数据】,弹出的【选择数据源】对话框中,单击【添加】

设置坐标轴最小值,显示公式与 R

这只是简单的做法,还要使用多个统计指标来检验,如回归模型的拟合优度检验(R²),回归模型的显著性检验(F检验)。回归系数的显著性检验(t检验)等来综合评估回归模型的优劣

标志:勾选

常数为零:表示该模型属于严格的正比例模型,因本例不是,故未勾选

置信度:90%或95%

残差:指观测值与预测值(拟合值)之间的差,也称剩余值

标准残差:(残差-残差的均值)/ 残差的标准差

残差图:以回归模型的自变量为横坐标,以残差为纵坐标绘制的散点图,若绘制的点都在以0为横轴的直线上下随机散布,则表示拟合结果合理

线性拟合图:以回归模型的自变量为横坐标,因变量及预测值为纵坐标绘制散点图

正态概率图:以因变量的百分比排名为横坐标,因变量作为纵坐标绘制散点图 

 

回归统计表

 

方差分析表

 

回归系数表

 

多重线性回归

一个因变量和多个自变量的回归模型为多重线性回归

两个或两个以上因变量的为多元线性回归

多重线性回归模型:

y=a+b1x1+b2x2+...+bnxn+c,c为随机因素对因变量所产生的影响

 

 

 

移动平均

适合短期预测,时间序列预测

Yt=(Xt-1+Xt-2+Xt-3+..+Xt-n)/n

Yt:对下一期的预测值

n:移动平均的时期个数

Xn-1:前期实际值

Xt-2、Xt-3和Xt-n:分别表示前两期、前三期直至前n期的实际值

 

 

指数平滑

 

 

 

 

 

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值