对局匹配

小明在围棋网站上发现系统自动匹配积分相差为K的玩家对弈。若要最大化无法匹配的用户数,需考虑相同积分用户及积分差不等于K的限制。通过存储相同积分用户数并分析积分差异,可以计算出最大不匹配用户数量。
摘要由CSDN通过智能技术生成

题目描述
小明喜欢在一个围棋网站上找别人在线对弈。这个网站上所有注册用户都有一个积分,代表他的围棋水平。

小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是 K 的两名用户匹配在一起。如果两人分差小于或大于 K,系统都不会将他们匹配。

现在小明知道这个网站总共有 N 名用户,以及他们的积分分别是 A 1,A 2,⋯AN 。

小明想了解最多可能有多少名用户同时在线寻找对手,但是系统却一场对局都匹配不起来(任意两名用户积分差不等于 K)?

输入描述

第一行包含两个整数 N,K。

第二行包含 N 个整数A1,A2,⋯AN。
其中,1≤N≤10^5, 0≤Ai≤10 ^5, 0≤K≤10 ^5。

输出描述
输出一个整数,代表答案。

输入输出样例
示例
输入

10 0
1 4 2 8 5 7 1 4 2 8

输出

6

运行限制

  • 最大运行时间:1s
  • 最大运行内存: 256M

思路:
(1)存储积分相同的人数。
(2)积分为i的人,不能和积分为i-k的人同时来。换句话说,积分为i的人来了,则积分为i-k的人一定不能来。

#include<iostream>
#include<math.h>
#include<algorithm>
using namespace std;
i
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zjojk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值