题目描述
循环数是那些不包括 00 且没有重复数字的整数(比如 81362)并且还应同时具有一个有趣的性质, 就像这个例子:
如果你从最左边的数字开始(在这个例子中 8)向右数最左边这个数(如果数到了最右边就回到最左边),你会停止在另一个新的数字(如果停在一个相同的数字上,这个数就不是循环数)。
就像:8 1 3 6 2 从最左边接下去数 8 个数字: 1 3 6 2 8 1 3 6 所以下一个数字是 6
重复这样做 (这次从 6
开始数 6 个数字) 并且你会停止在一个新的数字上:2 8 1 3 6 2, 也就是 2
再这样做 (这次数两个): 8 1
再一次 (这次一个): 3
又一次: 6 2 8
这时你回到了起点,在经过每个数字一次后回到起点的就是循环数。如果你经过每一个数字一次以后没有回到起点, 你的数字不是一个循环数。
给你一个数字 m ,找出第一个比 m 大的循环数, 输出数据保证结果能用一个无符号长整型数。 (追加提醒:循环数每个数位都必须要访问到)
输入格式
仅仅一行, 包括 m。
输出格式
仅仅一行,输出第一个比 m 大的循环数。
输入输出样例
输入 #1复制
81361
输出 #1复制
81362
解题思路:
枚举每一个比m大的数,进行判断。将数字每一位数存入数组。再根据题意,如果数里面有相同的数或者有0,就先排除掉。然后按照要求进行循环,循环最多跟当前数字位数一样多的次数,如果回到起点就退出循环,最后判断是否把所有的数都访问到了。
代码如下:
#include <iostream>
using namespace std;
int m, a[15],b[15];
int find(int x)
{
int i = 0, y = 1, c[15] = { 0 },sum=0;
do
{
a[i++] = x % 10;
c[x % 10]++;
if (c[x % 10] == 2 || x%10==0) return 0;
x = x / 10;
} while (x);
for (int j = 1; j <= 10; j++)
c[j] = 0;
for (int j = 1; j <= i; j++)
b[j] = a[i-j];
for(int j = 1; j <= i; j++)
{
y = (b[y] + y + i) % i;
if (y ==0) y = i;
if (c[y] == 0)
{
c[y]++;
sum++;
}
if (y == 1) break;
}
if (sum==i) return 1;
return 0;
}
int main()
{
cin >> m;
for (int i = m+1; i <= 100000000; i++)
{
if (find(i))
{
cout << i << endl;
break;
}
}
}
zbh