hdu 4640(状压dp)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4640

思路:f[i][j]表示一个人状态i下走到j的最小花费,dp[i][j]表示i个人在状态j下的最下花费。首先我们可以一遍bfs求出f[i][j],然后通过f[i][j]得到dp[1][i],最后就是更新dp[i][j]了。

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<queue>
 6 using namespace std;
 7 #define inf 1<<30
 8 typedef pair<int,int>PP;
 9 
10 int map[20][20];
11 int f[1<<18][20];//派一个人去,在某状态下到达点v的最小花费
12 int dp[4][1<<18];//派i个人去,在某状态的最小花费
13 bool mark[1<<18][20];
14 int n,m,S,ans;
15 
16 void bfs()
17 {
18     queue<PP>que;
19     que.push(make_pair(0,0));
20     memset(mark,false,sizeof(mark));
21     for(int i=0;i<(1<<n);i++)
22         for(int j=0;j<n;j++)f[i][j]=inf;
23     f[0][0]=0;
24     while(!que.empty()){
25         PP p=que.front();
26         que.pop();
27         int s=p.first,u=p.second;
28         mark[s][u]=false;
29         for(int i=0;i<n;i++){
30             if(map[u][i]<inf&&f[s|(1<<i)][i]>f[s][u]+map[u][i]){
31                 f[s|(1<<i)][i]=f[s][u]+map[u][i];
32                 if(!mark[s|(1<<i)][i]){
33                     mark[s|(1<<i)][i]=true;
34                     que.push(make_pair(s|(1<<i),i));
35                 }
36             }
37         }
38     }
39 }
40 
41 void Solve()
42 {
43     for(int i=1;i<=3;i++)
44         for(int j=0;j<(1<<n);j++)dp[i][j]=inf;
45     for(int i=0;i<(1<<n);i++)
46         for(int j=0;j<n;j++)dp[1][i]=min(dp[1][i],f[i][j]);
47     for(int i=2;i<=3;i++){
48         for(int j=0;j<(1<<n);j++){
49             //枚举子集
50             for(int k=j;k;k=(k-1)&j){
51                 dp[i][j]=min(dp[i][j],max(dp[1][k|1],dp[i-1][(j^k)|1]));
52             }
53         }
54     }
55     ans=inf;
56     for(int i=1;i<=3;i++)
57         for(int j=0;j<(1<<n);j++)if((j&S)==S)ans=min(ans,dp[i][j]);
58     if(ans==inf)ans=-1;
59     printf("%d\n",ans);
60 }
61 
62 int main()
63 {
64     int _case,u,v,w,k,t=1;
65     scanf("%d",&_case);
66     while(_case--){
67         scanf("%d%d",&n,&m);
68         for(int i=0;i<=n;i++)
69             for(int j=0;j<=n;j++)map[i][j]=(i==j?0:inf);
70         while(m--){
71             scanf("%d%d%d",&u,&v,&w);
72             u--,v--;
73             map[u][v]=map[v][u]=min(map[u][v],w);
74         }
75         S=0;
76         scanf("%d",&k);
77         while(k--){
78             scanf("%d",&u);
79             u--;
80             S|=(1<<u);
81         }
82         bfs();
83         printf("Case %d: ",t++);
84         Solve();
85     }
86     return 0;
87 }
88 
89 
90 
91             
View Code

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在态设计上走一些弯路。 我们来看一下态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值