1283. Find the Smallest Divisor Given a Threshold

本文介绍了一种寻找最小除数的算法,旨在找到一个正整数除数,使得给定整数数组除以此除数并四舍五入后的和小于等于预设阈值。通过二分查找法,算法能高效解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold.

Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5).

It is guaranteed that there will be an answer.

 

Example 1:

Input: nums = [1,2,5,9], threshold = 6
Output: 5
Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. 
If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). 

Example 2:

Input: nums = [2,3,5,7,11], threshold = 11
Output: 3

Example 3:

Input: nums = [19], threshold = 5
Output: 4

 

Constraints:

  • 1 <= nums.length <= 5 * 10^4
  • 1 <= nums[i] <= 10^6
  • nums.length <= threshold <= 10^6

二分

class Solution(object):
    def smallestDivisor(self, nums, threshold):
        """
        :type nums: List[int]
        :type threshold: int
        :rtype: int
        """
        import math
        lo,hi=1,max(nums)
        res = 99999999999
        while lo<=hi:
            mid=(lo+hi)//2
            t = sum(math.ceil(a/mid) for a in nums)
            if t<=threshold:
                res=min(res,mid)
                hi = mid - 1
            else:
                lo = mid + 1

        return res
s=Solution()
print(s.smallestDivisor(nums = [1,2,5,9], threshold = 6))
# print(s.smallestDivisor([2,3,5,7,11], 11))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值