664. Strange Printer

87 篇文章 0 订阅
4 篇文章 0 订阅

There is a strange printer with the following two special requirements:

  1. The printer can only print a sequence of the same character each time.
  2. At each turn, the printer can print new characters starting from and ending at any places, and will cover the original existing characters.

Given a string consists of lower English letters only, your job is to count the minimum number of turns the printer needed in order to print it.

Example 1:

Input: "aaabbb"
Output: 2
Explanation: Print "aaa" first and then print "bbb".

Example 2:

Input: "aba"
Output: 2
Explanation: Print "aaa" first and then print "b" from the second place of the string, which will cover the existing character 'a'.

Hint: Length of the given string will not exceed 100.


思路: dp[i][j]的意义没啥好说的,里面还要套一层循环也好说,但是这层循环的意义何在呢?

假设三层循环变量是i,j,k,因为i..k之间可能会与后面的k+1..j发生关联,即最佳的dp[i][j]在处理i..k中某一个的时候正好把k+1..j中的某个数给处理掉了,但是我们不知道最佳的dp[i][j]在i..k哪个位置与k+1..j的哪个位置联系在了一起。

那我们就用k表示处理到第k个位置的时候,正好把j位置的也一并处理掉了

(1)为什么是最右边的j位置:因为如果是中间位置,k总会遍历到的

(2)最右边要留出来,因为计算距离为d时,只能用距离为0..d-1的dp数组

class Solution {
	
    public int strangePrinter(String s) {
    	int n = s.length();
    	if(n == 0)	return 0;
    	int[][] dp = new int[n][n];
    	for(int i=0; i<n; i++)		dp[i][i] = 1;
    	char[] cs = s.toCharArray();
    	
    	for(int d=1; d<n; d++) {
    		for(int i=0; i+d<n; i++) {
    			dp[i][i+d] = d+1;
    			for(int j=i+1; j<=i+d; j++) {
    				int t = dp[i][j-1] + dp[j][i+d];
    				if(cs[j-1] == cs[i+d])	t--;
    				dp[i][i+d] = Math.min(dp[i][i+d], t);
    			}
    		}
    	}
    	
    	return dp[0][n-1];
    }


或者换个思路:

1. 如果把某个位置k的刷好了,那肯定就不要再改动这个k位置了,因为改动需要1次粉刷,可定就不是最优的了

2. 既然不能动以及刷好了的,那我们就可以吧原问题divide成2个互相独立的问题

3. 而且在刷k的时候,可能也可以把后面的顺带处理掉,至于为什么是最后这个数,参考上面的分析

class Solution:
    def strangePrinter(self, s):
        """
        :type s: str
        :rtype: int
        """
        s = ''.join(a for a,b in zip(s, '#'+s) if a!=b)
        n = len(s)
        if n==0: return 0
        dp = [[999999 for _ in range(n)] for _ in range(n)]
        for i in range(n): dp[i][i]=1
        
        for dist in range(1, n):
            for left in range(0, n-dist):
                right = left + dist
                for k in range(left, right):
                    cur = dp[left][k]+dp[k+1][right]
                    if s[k]==s[right]: cur -= 1
                    dp[left][right] = min(dp[left][right], cur)
        return dp[0][n-1]
    
s=Solution()
print(s.strangePrinter('aaabbb'))
print(s.strangePrinter('aba'))


至于DP子问题严格的证明,在讨论去也没发现。。。。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值