先看个基础的问题:
1. 1d range search:(对应到数据库就是range find)
如果只要查一次,遍历一次就好了,但是如果要查很多次呢(每次要查的范围不一样)?
如果待搜索的数据空间量还在变化呢?
这时,普通的brute-force就不行了,解决方案之一是把数据加到BST中,计算rank(比该节点的值小的节点有多少个)
这样就可以做到,无论是插入,查找多次都是logN的时间复杂度,如果要具体求出每个,也只要遍历二叉树就好了
有了上面计算一维空间范围的基础,就可以在此基础上进行一些更复杂的工作
2. line segment intersection:
对应的解决办法是:Sweep-line algorithm,想象一条竖线从做往右扫描,遇到一条横线的左端点,就把这条线的y坐标加到BST,遇到该横线的右端点就把这条横线的y坐标移除BST,
如果遇到的是竖线,就在这条竖线的范围内1d-search在该范围内的横线的y坐标
3. kd trees:
先看先看2维空间的2-d orthogonal range search来引出kd tree的概念
一个想法是对空间进行网格划分,避免不必要的搜索,但同时会需要额外的空间,这就有个trade-off,同时这种方法也不是很robost
可以看到上面的问题是没有考虑数据的实际分布,单纯的均匀划分,
如果按照点来进行空间的划分应该会好一点
BST层与层之间是横线划分和竖线划分交替的,
我们来看下,在这种划分下找在某一个区域的所有的点
可以看到二叉树的作用在于:当发现矩形在 划分线 的一侧时,另外一侧的点就不用搜索了
累世的可以推广到KD-tree
2D-tree还有很多的应用,在图形学里面应用也不少,比如要找到距离某个点A最近的点在哪
可以看到二叉树的作用在于:当点A到某条 划分线 的距离比当前optimal的距离还大时,那这条 划分线 另外一侧的点就不用搜索了