题目难度: 中等
今天继续更新程序员面试金典系列, 大家在公众号 算法精选 里回复 面试金典 就能看到该系列当前连载的所有文章了, 记得关注哦~
题目描述
哦,不!你不小心把一个长篇文章中的空格、标点都删掉了,并且大写也弄成了小写。像句子"I reset the computer. It still didn’t boot!“已经变成了"iresetthecomputeritstilldidntboot”。在处理标点符号和大小写之前,你得先把它断成词语。当然了,你有一本厚厚的词典 dictionary,不过,有些词没在词典里。假设文章用 sentence 表示,设计一个算法,把文章断开,要求未识别的字符最少,返回未识别的字符数。
注意:本题相对原题稍作改动,只需返回未识别的字符数
示例:
- 输入:
- dictionary = [“looked”,“just”,“like”,“her”,“brother”]
- sentence = “jesslookedjustliketimherbrother”
- 输出: 7
- 解释: 断句后为"jess looked just like tim her brother",共 7 个未识别字符。
提示:
- 0 <= len(sentence) <= 1000
- dictionary 中总字符数不超过 150000。
- 你可以认为 dictionary 和 sentence 中只包含小写字母。
题目思考
- 如何计算并维护最小的未识别字符数?
解决方案
思路
- 分析题目, 如果我们可以计算出任意起点下标 i 开始的子字符串的最小未识别字符数, 记作 dp[i]
- 那么显然整体的最小未识别字符数就是 dp[0]
- 以上就是典型的动态规划的思想, 利用前面的计算结果来推导出当前的结果
- 那如何计算 dp[i]呢?
- 首先初始化 dp[n]=0, 因为空字符串的最小未识别字符数显然是 0
- 然后从后向前遍历, 针对 dp[i] 而言, 它后面的所有 dp 值都已经计算好了
- 那么我们就可以遍历大于 i 的每个下标 j, 检查 i 到 j 的部分 [i,j) (左闭右开区间) 是否在字典内
- 在的话就不会增加未识别字符, 否则增加 j-i 个未识别字符
- 上述过程对应的转移方程就是:
- 假设 i 到 j 增加的未识别字符是 unidentified
- 那么就有 dp[i] = min(dp[j]+unidentified) (j 取值范围是[i+1,n])
- 另外, 我们可以先将输入的字典转成集合, 这样可以降低检查子串是否在字典的时间复杂度
- 下面代码有详细的注释, 方便大家理解
复杂度
- 时间复杂度
O(N^2*M)
: 假设 N 是 sentence 长度, M 是字典中的字符串的平均长度, 需要两层遍历找最小 dp 值 (O(N^2)), 而查找字符串的复杂度是 O(M) - 空间复杂度
O(N+C)
: 假设 N 是 sentence 长度, C 是字典中的总字符数, 记忆化搜索的缓存空间是 O(N), 将字典列表转成字符串集合的空间是 O©
代码
class Solution:
def respace(self, dictionary: List[str], sentence: str) -> int:
# 动态规划+字符串集合
# 先将给定的字典列表转成集合, 降低查找的时间复杂度
dictionary = set(dictionary)
n = len(sentence)
# 初始化未识别字符数为最大值
dp = [n] * (n + 1)
# 空字符串时未识别字符数为0
dp[n] = 0
for i in range(n)[::-1]:
# 逆序求dp值
for j in range(i + 1, n + 1):
# 如果sentence[i:j]在字典中, 则可以直接使用它, 此时未识别字符数是0, 否则就是对应的长度
unidentified = 0 if sentence[i:j] in dictionary else j - i
# 找最小的dp值
dp[i] = min(dp[i], dp[j] + unidentified)
return dp[0]
大家可以在下面这些地方找到我~😊
我的公众号: 算法精选, 欢迎大家扫码关注~😊