程序员面试金典 - 面试题 17.13. 恢复空格

题目难度: 中等

原题链接

今天继续更新程序员面试金典系列, 大家在公众号 算法精选 里回复 面试金典 就能看到该系列当前连载的所有文章了, 记得关注哦~

题目描述

哦,不!你不小心把一个长篇文章中的空格、标点都删掉了,并且大写也弄成了小写。像句子"I reset the computer. It still didn’t boot!“已经变成了"iresetthecomputeritstilldidntboot”。在处理标点符号和大小写之前,你得先把它断成词语。当然了,你有一本厚厚的词典 dictionary,不过,有些词没在词典里。假设文章用 sentence 表示,设计一个算法,把文章断开,要求未识别的字符最少,返回未识别的字符数。

注意:本题相对原题稍作改动,只需返回未识别的字符数

示例:

  • 输入:
    • dictionary = [“looked”,“just”,“like”,“her”,“brother”]
    • sentence = “jesslookedjustliketimherbrother”
  • 输出: 7
  • 解释: 断句后为"jess looked just like tim her brother",共 7 个未识别字符。

提示:

  • 0 <= len(sentence) <= 1000
  • dictionary 中总字符数不超过 150000。
  • 你可以认为 dictionary 和 sentence 中只包含小写字母。

题目思考

  1. 如何计算并维护最小的未识别字符数?

解决方案

思路
  • 分析题目, 如果我们可以计算出任意起点下标 i 开始的子字符串的最小未识别字符数, 记作 dp[i]
  • 那么显然整体的最小未识别字符数就是 dp[0]
  • 以上就是典型的动态规划的思想, 利用前面的计算结果来推导出当前的结果
  • 那如何计算 dp[i]呢?
    • 首先初始化 dp[n]=0, 因为空字符串的最小未识别字符数显然是 0
    • 然后从后向前遍历, 针对 dp[i] 而言, 它后面的所有 dp 值都已经计算好了
    • 那么我们就可以遍历大于 i 的每个下标 j, 检查 i 到 j 的部分 [i,j) (左闭右开区间) 是否在字典内
    • 在的话就不会增加未识别字符, 否则增加 j-i 个未识别字符
  • 上述过程对应的转移方程就是:
    • 假设 i 到 j 增加的未识别字符是 unidentified
    • 那么就有 dp[i] = min(dp[j]+unidentified) (j 取值范围是[i+1,n])
  • 另外, 我们可以先将输入的字典转成集合, 这样可以降低检查子串是否在字典的时间复杂度
  • 下面代码有详细的注释, 方便大家理解
复杂度
  • 时间复杂度 O(N^2*M): 假设 N 是 sentence 长度, M 是字典中的字符串的平均长度, 需要两层遍历找最小 dp 值 (O(N^2)), 而查找字符串的复杂度是 O(M)
  • 空间复杂度 O(N+C): 假设 N 是 sentence 长度, C 是字典中的总字符数, 记忆化搜索的缓存空间是 O(N), 将字典列表转成字符串集合的空间是 O©
代码
class Solution:
    def respace(self, dictionary: List[str], sentence: str) -> int:
        # 动态规划+字符串集合
        # 先将给定的字典列表转成集合, 降低查找的时间复杂度
        dictionary = set(dictionary)
        n = len(sentence)
        # 初始化未识别字符数为最大值
        dp = [n] * (n + 1)
        # 空字符串时未识别字符数为0
        dp[n] = 0
        for i in range(n)[::-1]:
            # 逆序求dp值
            for j in range(i + 1, n + 1):
                # 如果sentence[i:j]在字典中, 则可以直接使用它, 此时未识别字符数是0, 否则就是对应的长度
                unidentified = 0 if sentence[i:j] in dictionary else j - i
                # 找最小的dp值
                dp[i] = min(dp[i], dp[j] + unidentified)
        return dp[0]

大家可以在下面这些地方找到我~😊

我的 GitHub

我的 Leetcode

我的 CSDN

我的知乎专栏

我的头条号

我的牛客网博客

我的公众号: 算法精选, 欢迎大家扫码关注~😊

算法精选 - 微信扫一扫关注我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值