题目难度: 中等
今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复
剑指offer2
就能看到该系列当前连载的所有文章了, 记得关注哦~
题目描述
正整数 n 代表生成括号的对数,请设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
示例 1:
- 输入:n = 3
- 输出:[“((()))”,“(()())”,“(())()”,“()(())”,“()()()”]
示例 2:
- 输入:n = 1
- 输出:[“()”]
提示:
- 1 <= n <= 8
题目思考
- 如何保证生成的括号对是合法的组合?
解决方案
- 分析并观察题目用例, 不难发现 n 对括号的合法组合有以下两个特征:
- 左括号和右括号数目都恰好为 n
- 每个右括号作为结尾的前缀, 其右括号数目总是小于等于左括号数目 (不然就会有单独多出来的右括号无法与前面的左括号匹配)
- 根据以上两个特征, 我们可以采用递归回溯的思路, 具体如下:
- 记录当前左括号和右括号的数目, 以及当前生成的字符串
- 判断接下来是否可以再添加一个左括号或右括号:
- 左括号数目小于 n 时可以添加左括号;
- 左括号数目大于右括号数目时可以添加右括号 (保证添加的右括号可以与前面的一个未匹配的左括号匹配)
- 最后当左右括号数目都达到 n 时说明找到一个合法组合, 将其加入最终结果列表
- 下面的代码中有详细的注释, 方便大家理解
复杂度
- 时间复杂度
O(2^N)
: 对于每个左/右括号数目, 都需要两次递归调用其中一个数目加 1 的函数, 这里可以将其视为一个高度为 N 的满二叉树, 所以总时间为 2^N - 空间复杂度
O(N)
: 递归栈的消耗, 最大递归深度为 N
代码
class Solution:
def generateParenthesis(self, n: int) -> List[str]:
# 回溯, 使用左右两个括号的数目标记当前状态
res = []
def dfs(leftCnt, rightCnt, cur):
if leftCnt == n and rightCnt == n:
# 左右括号数目都达到n, 说明找到了一个有效组合
# 由于前面递归的每次选择都各不相同, 所以这里生成的组合也是唯一的, 自动做到了去重
res.append(cur)
return
if leftCnt < n:
# 当左括号数目不超过n时, 可以追加左括号
dfs(leftCnt + 1, rightCnt, cur + "(")
if leftCnt > rightCnt:
# 当左括号数目大于右括号时, 说明前面有尚未匹配的右括号, 可以追加右括号
dfs(leftCnt, rightCnt + 1, cur + ")")
dfs(0, 0, "")
return list(res)
大家可以在下面这些地方找到我~😊
我的公众号: 算法精选, 欢迎大家扫码关注~😊