欢迎使用CSDN-markdown编辑器

本文介绍了一款基于Markdown的编辑器,支持丰富的扩展功能如代码高亮、LaTeX公式、UML图表等,并具备离线写作及自动保存功能。

欢迎使用Markdown编辑器写博客

本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:

  • Markdown和扩展Markdown简洁的语法
  • 代码块高亮
  • 图片链接和图片上传
  • LaTex数学公式
  • UML序列图和流程图
  • 离线写博客
  • 导入导出Markdown文件
  • 丰富的快捷键

快捷键

  • 加粗 Ctrl + B
  • 斜体 Ctrl + I
  • 引用 Ctrl + Q
  • 插入链接 Ctrl + L
  • 插入代码 Ctrl + K
  • 插入图片 Ctrl + G
  • 提升标题 Ctrl + H
  • 有序列表 Ctrl + O
  • 无序列表 Ctrl + U
  • 横线 Ctrl + R
  • 撤销 Ctrl + Z
  • 重做 Ctrl + Y

Markdown及扩展

Markdown 是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档,然后转换成格式丰富的HTML页面。 —— [ 维基百科 ]

使用简单的符号标识不同的标题,将某些文字标记为粗体或者斜体,创建一个链接等,详细语法参考帮助?。

本编辑器支持 Markdown Extra ,  扩展了很多好用的功能。具体请参考Github.

表格

Markdown Extra 表格语法:

项目价格
Computer$1600
Phone$12
Pipe$1

可以使用冒号来定义对齐方式:

项目价格数量
Computer1600 元5
Phone12 元12
Pipe1 元234

定义列表

Markdown Extra 定义列表语法: 项目1 项目2
定义 A
定义 B
项目3
定义 C

定义 D

定义D内容

代码块

代码块语法遵循标准markdown代码,例如:

@requires_authorization
def somefunc(param1='', param2=0):
    '''A docstring'''
    if param1 > param2: # interesting
        print 'Greater'
    return (param2 - param1 + 1) or None
class SomeClass:
    pass
>>> message = '''interpreter
... prompt'''

脚注

生成一个脚注1.

目录

[TOC]来生成目录:

数学公式

使用MathJax渲染LaTex 数学公式,详见math.stackexchange.com.

  • 行内公式,数学公式为: Γ(n)=(n1)!n
  • 块级公式:

x=b±b24ac2a

更多LaTex语法请参考 这儿.

UML 图:

可以渲染序列图:

Created with Raphaël 2.1.0 张三 张三 李四 李四 嘿,小四儿, 写博客了没? 李四愣了一下,说: 忙得吐血,哪有时间写。

或者流程图:

Created with Raphaël 2.1.0 开始 我的操作 确认? 结束 yes no
  • 关于 序列图 语法,参考 这儿,
  • 关于 流程图 语法,参考 这儿.

离线写博客

即使用户在没有网络的情况下,也可以通过本编辑器离线写博客(直接在曾经使用过的浏览器中输入write.blog.csdn.net/mdeditor即可。Markdown编辑器使用浏览器离线存储将内容保存在本地。

用户写博客的过程中,内容实时保存在浏览器缓存中,在用户关闭浏览器或者其它异常情况下,内容不会丢失。用户再次打开浏览器时,会显示上次用户正在编辑的没有发表的内容。

博客发表后,本地缓存将被删除。 

用户可以选择 把正在写的博客保存到服务器草稿箱,即使换浏览器或者清除缓存,内容也不会丢失。

注意:虽然浏览器存储大部分时候都比较可靠,但为了您的数据安全,在联网后,请务必及时发表或者保存到服务器草稿箱

浏览器兼容

  1. 目前,本编辑器对Chrome浏览器支持最为完整。建议大家使用较新版本的Chrome。
  2. IE9以下不支持
  3. IE9,10,11存在以下问题
    1. 不支持离线功能
    2. IE9不支持文件导入导出
    3. IE10不支持拖拽文件导入


  1. 这里是 脚注内容.
卷积神经网络(CNN)是针对多维网格数据(如图像、视频)设计的深度学习架构,其结构灵感来源于生物视觉系统对信息的分层处理机制。该模型通过局部连接、参数共享、层级特征提取等策略,有效捕获数据中的空间模式。以下从结构特性、工作机制及应用维度展开说明: **1. 局部连接与卷积运算** 卷积层利用可学习的多维滤波器对输入进行扫描,每个滤波器仅作用于输入的一个有限邻域(称为感受野),通过线性加权与非线性变换提取局部特征。这种设计使网络能够聚焦于相邻像素间的关联性,从而识别如边缘走向、色彩渐变等基础视觉模式。 **2. 参数共享机制** 同一卷积核在输入数据的整个空间范围内保持参数不变,大幅降低模型复杂度。这种设计赋予模型对平移变换的适应性:无论目标特征出现在图像的任何区域,均可由相同核函数检测,体现了特征位置无关性的建模思想。 **3. 特征降维与空间鲁棒性** 池化层通过对局部区域进行聚合运算(如取最大值或均值)实现特征降维,在保留显著特征的同时提升模型对微小形变的容忍度。这种操作既减少了计算负荷,又增强了特征的几何不变性。 **4. 层级特征抽象体系** 深度CNN通过堆叠多个卷积-池化层构建特征提取金字塔。浅层网络捕获点线面等基础模式,中层网络组合形成纹理部件,深层网络则合成具有语义意义的对象轮廓。这种逐级递进的特征表达机制实现了从像素级信息到概念化表示的自动演进。 **5. 非线性扩展与泛化控制** 通过激活函数(如ReLU及其变体)引入非线性变换,使网络能够拟合复杂决策曲面。为防止过拟合,常采用权重归一化、随机神经元失活等技术约束模型容量,提升在未知数据上的表现稳定性。 **6. 典型应用场景** - 视觉内容分类:对图像中的主体进行类别判定 - 实例定位与识别:在复杂场景中标定特定目标的边界框及类别 - 像素级语义解析:对图像每个像素点进行语义标注 - 生物特征认证:基于面部特征的个体身份鉴别 - 医学图像判读:辅助病灶定位与病理分析 - 结构化文本处理:与循环神经网络结合处理序列标注任务 **7. 技术演进脉络** 早期理论雏形形成于1980年代,随着并行计算设备的发展与大规模标注数据的出现,先后涌现出LeNet、AlexNet、VGG、ResNet等里程碑式架构。现代研究聚焦于注意力分配、跨层连接、卷积分解等方向,持续推动模型性能边界。 卷积神经网络通过其特有的空间特征提取范式,建立了从原始信号到高级语义表达的映射通路,已成为处理几何结构数据的标准框架,在工业界与学术界均展现出重要价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
屋顶面板实例分割数据集 一、数据集基础信息 • 数据集名称:屋顶面板实例分割数据集 • 图片数量: 训练集:1559张图片 验证集:152张图片 测试集:95张图片 总计:1806张图片 • 训练集:1559张图片 • 验证集:152张图片 • 测试集:95张图片 • 总计:1806张图片 • 分类类别: panel(面板):屋顶上的面板结构,如太阳能板或其他安装组件。 roof(屋顶):建筑屋顶区域,用于定位和分割。 • panel(面板):屋顶上的面板结构,如太阳能板或其他安装组件。 • roof(屋顶):建筑屋顶区域,用于定位和分割。 • 标注格式:YOLO格式,包含实例分割的多边形标注,适用于实例分割任务。 • 数据格式:图片文件,来源于航拍或建筑图像,涵盖多种场景。 二、数据集适用场景 • 建筑与施工检查:用于自动检测和分割屋顶上的面板,辅助建筑质量评估、维护和安装规划。 • 可再生能源管理:在太阳能发电系统中,识别屋顶太阳能板的位置和轮廓,优化能源部署和监控。 • 航拍图像分析:支持从空中图像中提取建筑屋顶信息,应用于城市规划、房地产评估和基础设施管理。 • 计算机视觉研究:为实例分割算法提供基准数据,推动AI在建筑和能源领域的创新应用。 三、数据集优势 • 精准实例分割标注:每个面板和屋顶实例均通过多边形标注精确定义轮廓,确保分割边界准确,支持细粒度分析。 • 类别聚焦与实用性:专注于屋顶和面板两个关键类别,数据针对性强,直接适用于建筑和能源行业的实际需求。 • 数据多样性与泛化性:涵盖不同环境下的屋顶和面板图像,增强模型在多变场景中的适应能力。 • 任务适配便捷:标注兼容主流深度学习框架(如YOLO),可快速集成到实例分割模型训练流程。 • 行业价值突出:助力自动化检测系统开发,提升建筑检查、能源管理和城市分析的效率与准确性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值