1 题目
给定一个整数 n,生成所有由 1 … n 为节点所组成的 二叉搜索树 。
示例:
输入:3
输出:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
解释:
以上的输出对应以下 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \
3 2 1 1 3 2
/ / \
2 1 2 3
提示:
0 <= n <= 8
2 思路
这道题思路可以用动态规划的思想来做,设d[i]
为1…i的数组成的二叉搜索树解集,那么d[i+1]
的解集可以从d[i]
推出,即遍历d[i-1]
中所有解集,每个解都是一棵二叉树,每颗树的右半部分(包括根节点)中的所有右节点,都可以取出作为新节点i的左子树,然后用新节点替换原来的右节点,就形成一颗新的二叉搜索树
3代码
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {number} n
* @return {TreeNode[]}
*/
var generateTrees = function(n) {
const d = [];
if (n === 0) return d;
d[1] = [new TreeNode(1)];
if (n === 1) return d[1];
for (let i=2; i<=n; i++) {
let res = [];
for (let j=0;j<d[i-1].length; j++) {
let node = d[i-1][j];
let p = node;
let stack = [];
while(p) { //将所有二叉树右半部分所有的右节点入栈
stack.push(p);
p = p.right;
}
let father;
while(stack.length > 0) {
addNode = new TreeNode(i);
p = stack.pop();
father = stack[stack.length - 1];
if (!p.right) { //如果是叶子节点
p.right = addNode;
res.push(deepCopy(node));
p.right = null; //这里要还原,以免改变了原来树的结构
}
addNode.left = p; //将当前右节点作为新节点的左子树
if (father) { //如果不是根节点
father.right = addNode; //替换当前的右节点
res.push(deepCopy(node));
father.right = p; //这里要还原,以免改变了原来树的结构
} else { //如果是根节点
res.push(addNode);
}
}
}
d[i] = res;
}
return d[n];
function TreeNode(val, left, right) {
this.val = (val===undefined ? 0 : val)
this.left = (left===undefined ? null : left)
this.right = (right===undefined ? null : right)
}
function deepCopy(node) {
return JSON.parse(JSON.stringify(node));
}
};