如何在n个顶点,n*(n-1)/2条边中,筛选出具有n-1条边的,且具有最小代价的连通网呢?这就是最小生成树问题,下面介绍两种算法:
1 普里姆(Prim)算法
首先建立图的邻接矩阵存储:
class Graph{
constructor(v,vr){
let len = v.length
this.vexs = [].slice.apply(v);
let arcs = [];
for (let i=0;i<len;i++){
arcs[i] = new Array(len);
for (let j=0;j<len;j++){
arcs[i][j] = i===j ? 0 : 65535;
}
}
for (let arc of vr){
let v1 = v.indexOf(arc[0]);
let v2 = v.indexOf(arc[1]);
arcs[v1][v2] = arcs[v2][v1] = arc[2] || 1;
}
this.arcs = arcs;
}
}
let a = new Graph(['v0','v1','v2','v3','v4','v5','v6','v7','v8'],[['v0','v1',10],['v0','v5',11],['v1','v6',16],['v1','v2',18],['v1','v8',12],['v6','v7',19],['v5','v6',17],['v4','v5',26],['v3','v4',20],['v3','v7',16],['v2','v8',8],['v3','v8',21],['v4','v7',7],['v2','v3',22],['v3','v6',24]]);
console.log(a);
算法思路:
假设N=(P,{E})是连通网,TE是N上最小生成树中边的集合。算法从U={u0} (u0∈V),TE={ }开始。重复执行下述操作:在所有u∈U,v∈V-U的边(u,v)∈E中找一条代价最小的边(u0,v0),并入集合TE,同时v0并入U,直至U=V为止。此时TE中必有n-1条边,则T=(V,{TE})为N的最小生成树。
为实现该算法,需要设置一个辅助数组closeEdge(长度与图的顶点数相同)用于记录从顶点集U到V-U的代价最小的边。该数组每个元素有两个域,分别为adjvex和lowcost,用于表示一条边。以下图为例:
lowcost | 0 | 0 | 18 | 65535 | 26 | 0 | 16 | 65535 | 12 |
---|---|---|---|---|---|---|---|---|---|
adjvex | 0 | 0 | 1 | 0 | 5 | 0 | 1 | 0 | 1 |
此时表示,边(v0,v1)和(v0,v5)已经入选最小生成树,用边的权值lowcost值等于0标识。边(v1,v2)这条边权值为18,(v5,v4)这条边权值为26,(v1,v6)这条边权值为16,(v1,v8)这条边权值为12,其余顶点对应的边权值为65535(不存在)。整个算法过程就是一步一步填补这个辅助数组的过程,当lowcost中所有顶点的值都为0时,表示已经找到n-1条边,完成了算法。
可以根据算法,思考这个问题:
class MiniEdge{ //定义辅助数组的元素
constructor(adjvex,lowcost){
this.adjvex = adjvex; //用于表示边
this.lowcost = lowcost; //用于存储边的权值
}
}
function Prim(G){
let closeEdge = new Array(G.vexs.length);
closeEdge[0] = new MiniEdge(0,0); //将顶点v0加入最小生成树
for (let i=1;i<G.vexs.length;i++){ //初始化数组,此时数组保存着顶点v0到各个顶点的边及权值
closeEdge[i] = new MiniEdge(0,G.arcs[0][i]);
}
var j;
var miniVex; //用于存储具有最小权值的边顶点下标
var miniCost; //用于存储最小的权值
for (let i=1;i<G.vexs.length;i++){
j = 1;
miniVex = 0; //初始化
miniCost = 65535;
while(j<G.vexs.length){ //找寻最小权值的边,并存储相应的顶点
if (closeEdge[j].lowcost !==0 && closeEdge[j].lowcost < miniCost){ //注意lowcost等于0代表该节点已经入选生成树,应跳过
miniCost = closeEdge[j].lowcost;
miniVex = j;
}
j++;
}
console.log(G.vexs[closeEdge[miniVex].adjvex],G.vexs[miniVex],miniCost); //打印最小权值的边及权值
closeEdge[miniVex].lowcost = 0; //将当前顶点加入最小生成树
for (j = 1;j<G.vexs.length;j++){ //更新辅助数组,此时数组保存着最小生成树中顶点到图中其余各顶点权值最小的边
if (closeEdge[j].lowcost !==0 && G.arcs[miniVex][j] < closeEdge[j].lowcost){
closeEdge[j].lowcost = G.arcs[miniVex][j];
closeEdge[j].adjvex = miniVex;
}
}
}
}
由此可见,两个嵌套的循环,Prim算法复杂度为O(n2)
2 克鲁斯卡尔(Kruskal)算法
Prim算法以顶点为起点,逐步寻找各顶点上最小权值的边来构建最小生成树,而Kruskal算法直接就以边为目标去构造最小生成树。
首先需要构建一个边集数组:
class edge{
constructor(begin,end,weight){
this.begin = begin;
this.end = end;
this.weight = weight;
}
}
class Graph{
constructor(v,vr){
let len = v.length;
this.vexs = [].slice.apply(v);
let edges = [];
let v1=0,v2=0;
for (let arc of vr){
v1 = v.indexOf(arc[0]);
v2 = v.indexOf(arc[1]);
edges.push(new edge(v1,v2,arc[2]));
}
edges.sort(function(a,b){
return a.weight - b.weight;
})
this.edges = edges;
}
}
let a = new Graph(['v0','v1','v2','v3','v4','v5','v6','v7','v8'],[['v0','v1',10],['v0','v5',11],['v1','v6',16],['v1','v2',18],['v1','v8',12],['v6','v7',19],['v5','v6',17],['v4','v5',26],['v3','v4',20],['v3','v7',16],['v2','v8',8],['v3','v8',21],['v4','v7',7],['v2','v3',22],['v3','v6',24]]);
console.log(a);
算法思路:
假设N={V,{E}}是连通网,则令最小生成树的初始状态为只有n个顶点而无边的非连通图T={V,{ }},图中每个顶点自成一个连通分量,在E中选择代价最小的边,若该边依附的顶点落在T中不同的连通分量上,则将此边加入到T中,否则舍去此边而选择下一条代价最小的边。依次类推,直至T中所有顶点都在同一连通分量上为止。
由此可见该算法的关键在于如何判定一条边依附的顶点是否落在T中不同的连通分量上,换句话说,就是如果加入了这条边,则判断T中是否形成了环路,若形成了环路,则必须舍弃这条边。因此需要一个辅助数组parents来帮助判断,如图:
边(V0,V1)和(V0,V2)已经入选最小生成树,对应的数组为:
1 | 2 | 0 | 0 |
---|
其中,parents[0] = 1, parents[1] = 2, parents[2] = 0,代表此时最小生成树中已包含v0,v1,v2顶点。此时还需添加一条边,由于边(V1,V2)权值较小,因此先试试添加这条边,将这条边的一个顶点序号1代入下列代码,返回2,再将该边的另一个顶点2代入,返回2,我们发现头尾顶点的返回值相等,这表明此时形成了环路,应该舍弃这条边。接着,我们代入边(V1,V3)的两个顶点序号,返回2≠3,因此没有将其纳入最小生成树中。
function(i){
while (parents[i] >0) i = parents[i];
return i;
}
算法代码很短,很容易理解
function Kruskal(G){
let parents = new Array(G.vexs.length);
for (let i=0;i<G.vexs;i++){ //初始化辅助数组
parents[i] = 0;
}
let v1=0,v2=0;
for (let edge of G.edges){ //遍历所有边
v1 = find(edge.begin);
v2 = find(edge.end);
if (v1 !== v2){ //若不形成环路,则将这条边加入生成树
parents[v1] = v2;
console.log(G.vexs[edge.begin],G.vexs[edge.end],edge.weight);
}
}
function find(i){ //辅助函数
while(parents[i] > 0)
i = parents[i];
return i;
}
}
由此可见,在Kruskal算法中,若以堆来存放边,则find函数复杂度为O(loge),而外部有一个for循环e次,因此总算法为O(eloge)