- 博客(28)
- 收藏
- 关注
原创 TensorBoard可视化
本章综合了PyTorch官方教程和书本代码,重点讲解TensorBoard在PyTorch中的应用。官方教程参考链接!# 输出结果显示tensorboard安装成功 # 同时提示建议使用虚拟环境安装return x。
2025-07-21 09:50:46
1152
原创 数据增强和微调
数据增强(Data augmentation)是指对训练数据进行变换以增加训练数据量,提高模型的泛化能力。微调(Fine-tuning)则是迁移学习中的关键技术,通过解冻预训练模型的部分层进行二次训练,显著提升模型在特定任务上的性能。数据增强黄金组合:裁剪+翻转+色彩抖动微调最佳实践先冻结训练分类器解冻后使用更小学习率(1e-5量级)适当增加训练轮次(10-20 epochs)效果验证:微调后测试准确率普遍提升10%以上注意事项务必设置随机种子保证可复现性验证集/测试集禁用数据增强。
2025-07-19 11:42:10
929
原创 迁移学习--基于torchvision中VGG16模型的实战
..Done小数据高效利用:仅用少量样本达到高准确率特征迁移能力:VGG16卷积基有效提取通用图像特征训练效率:仅需微调顶层,大幅减少训练时间和资源。
2025-07-16 15:50:20
756
原创 卷积模型的优化--Dropout、批标准化与学习率衰减
Dropout:有效抑制过拟合,使测试准确率提升至93.8%批标准化:加速模型收敛,提高训练稳定性学习率衰减:避免训练后期跳过极值点,提升最终性能💎最佳实践:在卷积层后添加批标准化,全连接层后添加Dropout,配合学习率衰减策略,可获得最佳模型性能这些优化技术在实际计算机视觉任务中具有广泛应用价值,能显著提升模型泛化能力和训练效率!🚀。
2025-07-14 21:17:36
914
原创 创建自定义Dataset类与多分类问题实战
多分类标签(非二分类)所有图片存储在单一文件夹未划分训练集/测试集❗不能使用加载该数据集✅ 需通过继承实现自定义数据集类pil_img = pil_img.convert('RGB') # 确保RGB格式pil_img = transform(pil_img) # 应用预处理。
2025-07-14 10:02:22
497
原创 图像读取与模型保存--基于NWPU-RESISC45数据集的图像二分类实战
池化层输出尺寸floor((size+2*padding - kernel_size)/stride) + 1# 所以最后是30*30return x数据预处理:使用transforms进行标准化处理,这对CNN模型很重要模型结构:典型的CNN结构包含卷积层、池化层和全连接层训练技巧使用GPU加速训练(如果有)监控训练和验证集的损失和准确率保存最佳模型权重模型保存可以只保存模型权重(也可以保存整个检查点(包含优化器状态等)最佳实践是保存验证集上表现最好的模型。
2025-07-13 17:07:58
1100
原创 PyTorch多层感知机(MLP)模型构建与MNIST分类训练
解决MNIST手写数字分类问题,创建一个简单的多层感知机(MLP)模型使用层构建模型使用ReLU作为激活函数包含两个全连接隐藏层(120和84个神经元)和输出层(10个神经元对应10个数字类别)模型输入为展平后的28×28=784像素图像# 第一层输入展平后的特征长度28乘28,创建120个神经元# 第二层输入的是前一层的输出,创建84个神经元# 输出层接受第二层的输入84,输出分类个数10。
2025-07-12 16:13:04
1020
原创 分类问题与多层感知机
核心功能:处理图像和视频的PyTorch辅助库主要组件常用数据集(MNIST, CIFAR等)预训练模型(ResNet, VGG等)图像转换函数重要类:所有数据集的基础类:批量加载数据的关键工具概念要点应用场景ToTensor归一化/格式标准化图像预处理DataLoader批处理/乱序/并行高效数据加载ReLU计算高效/缓解梯度消失隐藏层首选Sigmoid概率输出/二分类输出层(二分类)Tanh零中心化RNN/LSTMLeakyReLU解决神经元死亡。
2025-07-12 10:18:19
817
原创 tensor
张量创建使用从Python数据创建使用从NumPy数组转换掌握等创建方法数据类型管理重点掌握float32(模型输入)和int64(分类标签)使用.float()和.long()快速转换类型设备转移使用在CPU/GPU间移动张量始终检查确保张量位置正确自动微分设置启用梯度跟踪使用自动计算梯度使用上下文管理器禁用梯度计算性能优化尽量使用就地操作(如add_())减少内存开销合理使用view()进行形状重塑及时使用detach()分离不需要的计算图。
2025-07-11 23:15:33
632
原创 [特殊字符]服务器环境配置指南:Anaconda安装与文件管理
[立即下载 | Anaconda官方下载]最重要的一个常用操作示例复制单个文件:复制多个文件:复制整个文件夹:从服务器下载文件:⚠️ 注意事项建议使用绝对路径端口参数要放在前面路径包含空格时要用引号包裹🛠️ 安装Anaconda1️⃣ 解决权限问题如果出现2️⃣ 运行安装程序3️⃣ 自定义安装路径在安装过程中会提示:输入你想要的安装路径,例如:🔧 配置Anaconda初始化conda安装完成后会询问:建议选择参考CSDN教程进行换源配置
2025-07-09 16:03:05
412
原创 浅谈STL学习
主要用于存储不重复的元素,而用于存储键值对。二者的find和count方法的返回值都是为了检测元素是否存在,find返回迭代器,count返回匹配的数量(在这两者中都是 0 或 1)。
2025-03-14 22:08:11
713
原创 c_cpp_properties.json文件的重要性
删除文件会导致 VS Code 无法正确识别项目的结构和依赖,从而引发编译错误和无法进行智能感知。因此,建议保留这个文件,并在需要时根据项目的变化进行适当的修改。是的,你的理解是正确的。总的来说,文件和其内容的存在是为了帮助开发者更好地管理项目和依赖,特别是在使用特定库时,确保能够顺利编译和获得代码提示。如果你在使用其他库时没有遇到问题,文件就可能不会生成。继续保留该文件,并根据你的项目需求进行调整,能够更好地利用 VS Code 的功能。我的文件是这样的],"_DEBUG","UNICODE",
2025-02-12 12:34:18
653
1
原创 vs code中easyx库的配置
这段代码的功能是创建一个 640x480 像素的窗口,并在其中绘制一个半径为 100 像素的圆。当用户按下任意键后,窗口关闭。
2025-02-12 11:29:29
1033
原创 浅谈python中sys.stdin.read()方法终端的读取
主要用于从标准输入流中读取数据,直到遇到 EOF(End of File,文件结束符)。返回值:这个函数返回一个字符串,包含了标准输入中的所有数据。适用场景:适合于需要一次性读取大量数据的情况,例如从文件重定向输入,或在交互式会话中批量输入数据。是一个强大的工具,用于从标准输入流集中读取数据。它适合处理批量输入数据的场景,也非常适合在命令行中运行脚本时使用。了解它的性能和使用场景将帮助你更好地处理输入数据。使用CTRL + Z或CTRL + D来表示结束输入(视操作系统而定)。
2025-02-06 17:15:35
2745
原创 python常用库--5
使用可以确保随机操作的确定性。在需要可重复性的场景中,在程序开头设置固定的种子即可。对于更复杂的需求(如并行处理),可创建独立的随机数生成器实例。
2025-02-04 10:39:43
1033
原创 python基本数据类型--2
t1=(1,2,3)print(t1)'''注意定义一个元组的时候,如果元祖只有一个元素,则这个元素后面必须要有逗号,否则元素就还是其原来的类型'''t2=(1)print(t2)t3=(1,)print(t3)'''输出:(1, 2, 3)1(1,)'''浅拷贝:创建一个新对象,复制引用,嵌套对象仍然指向原对象。深拷贝:创建一个新对象,完整复制所有内容,嵌套对象也是新的。这两个概念在处理复杂数据结构时尤其重要,你是否有特定的编程环境或语言想要更深入讨论呢?
2025-01-29 20:30:52
725
2
原创 python基础语法--1
sys` 模块是 Python 的一个内置模块,提供对解释器操作和访问 Python 运行时的功能。它常用于对程序和环境的控制,处理命令行参数、操作标准输入输出等功能。
2025-01-26 19:39:10
873
原创 华为电脑智能充电模式的设置与关闭
你是否也有这样的情况:电脑开启了电池保养模式,只能充电到70%?看着很不顺眼,想要关闭,又找了半天找不到关闭的位置?up看了很多视频,终于找到了位置,作为记录。
2025-01-24 17:15:37
4572
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅