动态规划之二:剪绳子问题

本文探讨了一种动态规划策略来解决如何将一根长度为N的绳子剪成M段,使得这些段的乘积最大。通过逐步分析不同长度绳子的最优解,得出状态转移函数f(N)=max(f(i) * f(N-i)),其中i的取值范围为(i>0&&i<=n/2)。并提供了相应的程序实现。
摘要由CSDN通过智能技术生成

问题:现有一根长度为N的绳子,需要你剪成M段,使M段的乘积最大。(其中M、N都为整数,剪成的每段长度也为整数,N已知,M未知)

例如 绳子长度N=8 剪成M=3,数值为别为2,3,3,则乘积最大为 2*3*3=18。

 当我们遇到一个大规模问题时,总是习惯把问题的规模变小,这样便于分析讨论。

我们从最简单的情况进行分析:

当绳子的长度N=1时,我们至少需要剪绳子一次,这时乘积为0;

当绳子的长度为N=2时,剪一次后绳子的两段长度为分别为1、1,这时乘积为1*1=1;

当绳子的长度为N=3时,我们对绳子有两种方式,其一为剪成三段,它们的长度分别为1、1、1,乘积为1*1*1=1;其二为剪成两段,它们的长度分别为1、2,乘积为1*2=2,则最终乘积取这两种方式中的最大值为max(1*1*1,1*2)。

当绳子的长度为N=4时,我们对绳子有三种方式,其一为剪成四段,它们的长度分

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值