RSA算法原理1

这篇博客介绍了RSA加密算法的基本原理,包括所需的数学知识如素数、互质数和模运算。详细阐述了公钥和私钥的生成过程,以及加密和解密消息的步骤。还提到了RSA的安全性和潜在缺点,指出其安全性依赖于大数因子分解的难度,同时讨论了量子计算机可能对RSA构成的威胁。最后,展示了使用Java实现RSA加密和解密的简单示例。
摘要由CSDN通过智能技术生成

必备数学知识

  RSA加密算法中,只用到素数、互质数、指数运算、模运算等几个简单的数学知识。所以,我们也需要了解这几个概念即可。

素数

  素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。这个概念,我们在上初中,甚至小学的时候都学过了,这里就不再过多解释了。

互质数

  百度百科上的解释是:公因数只有1的两个数,叫做互质数。;维基百科上的解释是:互质,又称互素。若N个整数的最大公因子是1,则称这N个整数互质。

  常见的互质数判断方法主要有以下几种:

  1. 两个不同的质数一定是互质数。例如,2与7、13与19。
  2. 一个质数,另一个不为它的倍数,这两个数为互质数。例如,3与10、5与 26。
  3. 相邻的两个自然数是互质数。如 15与 16。
  4. 相邻的两个奇数是互质数。如 49与 51。
  5. 较大数是质数的两个数是互质数。如97与88。
  6. 小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。
  7. 2和任何奇数是互质数。例如2和87。
  8. 1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
  9. 辗转相除法。
指数运算

  指数运算又称乘方计算,计算结果称为幂。nm指将n自乘m次。把nm看作乘方的结果,叫做”n的m次幂”或”n的m次方”。其中,n称为“底数”,m称为“指数”。

模运算

  模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个整数,若得相同余数,则二整数同余

  两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余,记作: a ≡ b (mod m);读作:a同余于bm,或者,ab关于模m同余。例如:26 ≡ 14 (mod 12)。

RSA加密算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值