在做一些二叉树的过程中,我发现,大多数题目是有规律可循的.所以打算总结一下二叉树这一块的打法.
ps: 文中的所有代码均可在 https://github.com/xfhy/Algorithms 中找到. 该项目有一些关于二叉树的基本学习代码和二叉树的题解等.
我的所有原创Android知识体系,已打包整理到GitHub.努力打造一系列适合初中高级工程师能够看得懂的优质文章,欢迎star~
1. 基本概念
- 二叉树(binary tree) 是树的一种特殊形式。二叉,顾名思义,这种树的每个节点最多有2个孩子节点。注意,这里是最多有2个,也可能只有1个,或者没有孩子节点。
- 满二叉树: 一个二叉树的所有非叶子节点都存在左右孩子,并且所有叶子节点都在同一层级上.
- 完全二叉树: 对一个有n个节点的二叉树,按层级顺序编号,则所有节点的编号为从1到n.如果这个树所有节点和同样深度的满二叉树的编号为从1到n的节点位置相同,则这个二叉树为完全二叉树.
- 二叉查找树(又名: 二叉排序树,二叉搜索树): 这种二叉树的主要作用就是进行查找操作.它的中序遍历是排好序了的,即由小到大. 满足二叉查找树需要几个条件
- 如果左子树不为空,则左子树上所有节点的值均小于根节点的值
- 如果右子树不为空,则右子树上所有节点的值均大于根节点的值
- 左右子树也都是二叉查找树
- 从节点之间位置关系的角度来看,二叉树的遍历分为4种
- 前序遍历(根节点在前)
- 中序遍历
- 后序遍历
- 层序遍历
- 从更宏观的角度来看,二叉树的遍历归结为两大类
- 深度优先遍历(前序、中序、后序遍历)
- 广度优先遍历(层序遍历)
文中的二叉树节点定义如下:
public static class TreeNode { public int val; public TreeNode left; public TreeNode right;
<span class="token keyword">public</span> <span class="token function">TreeNode</span><span class="token punctuation">(</span><span class="token keyword">int</span> val<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span> <span class="token keyword">this</span><span class="token punctuation">.</span>val <span class="token operator">=</span> val<span class="token punctuation">;</span> <span class="token punctuation">}</span>
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
2. 深度优先遍历
2.1 递归方式
递归的方式实现深度优先遍历代码非常简洁,往往只需要几行代码即可.用递归来实现深度优先遍历是比较自然的,仅仅只是输出的执行位置不同而已.下面我们来看哈代码:
//前序遍历
public void preOrderTraveral(TreeNode node) {
if (node == null) {
return;
}
System.out.println(node.val);
preOrderTraveral(node.left);
preOrderTraveral(node.right);
}
//中序遍历
public void inOrderTraveral(TreeNode node) {
if (node == null) {
return;
}
inOrderTraveral(node.left);
System.out.println(node.val);
inOrderTraveral(node.right);
}
//后序遍历
public void postOrderTraveral(TreeNode node) {
if (node == null) {
return;
}
postOrderTraveral(node.left);
postOrderTraveral(node.right);
System.out.println(node.val);
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
2.2 非递归方式
绝大多数可以用递归解决的问题,都可以用栈来解决.它们都有回溯的特性.
首先来看前序遍历,实现非递归方式前序遍历的思路:
- 用一个栈来记录访问过的节点
- 然后从根节点开始往左节点遍历,一直往下,直到左边没有左节点
- 然后弹栈,继续访问弹出的这个元素的右节点.如果这个右节点有左子树的话,把当前节点当做根节点,继续重复2步骤
- 直到把所有元素都遍历完成
//前序遍历
public void preOrderTraveralWithStack(TreeNode root) {
Stack<TreeNode> stack = new Stack<>();
TreeNode treeNode = root;
while (treeNode != null || !stack.isEmpty()) {
//不断往栈中压入左节点,直到左边没有左节点
while (treeNode != null) {
System.out.println(treeNode.val);
stack.push(treeNode);
treeNode = treeNode.left;
}
//弹栈 访问右边节点
if (!stack.isEmpty()) {
treeNode = stack.pop();
treeNode = treeNode.right;
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
然后我们来看中序遍历,在前序遍历的基础上,只需要稍等改动一下sout的位置即可.从根节点开始找二叉树的最左节点,找到最左节点后访问,对于每个节点来说,它都是以自己为根的子树的根节点,访问完之后就可以转到右儿子上了.
public void middleOrderTraversal(TreeNode root) {
Stack<TreeNode> stack = new Stack<>();
TreeNode treeNode = root;
while (treeNode != null || !stack.isEmpty()) {
//不断往栈中压入左节点,直到左边没有左节点
while (treeNode != null) {
stack.push(treeNode);
treeNode = treeNode.left;
}
//弹栈 访问右边节点
if (!stack.isEmpty()) {
treeNode = stack.pop();
System.out.println(treeNode.val);
treeNode = treeNode.right;
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
后续遍历就稍微复杂点,其实也只需要在先序遍历的基础上稍微改改就行了,先序是:中前后,改一下while中的左右压栈顺序就是: 中后前,得到数据之后再反转,即:前后中.就得到了最后的结果
public List<Integer> postOrderTraversal(TreeNode root) {
LinkedList<Integer> res = new LinkedList<>();
if (root == null) {
return res;
}
LinkedList<TreeNode> stack = new LinkedList<>();
stack.add(root);
while (!stack.isEmpty()) {
TreeNode pop = stack.pop();
res.add(pop.val);
if (pop.left != null) {
stack.push(pop.left);
}
if (pop.right != null) {
stack.push(pop.right);
}
}
Collections.reverse(res);
return res;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
3. 广度优先遍历
即按照高度顺序一层一层的访问整棵树,高层次节点将会比低层次节点先被访问到.
下面来看一下用代码怎么实现二叉树的层序遍历,这里需要用到一个队列.将根节点入队,
/**
* 二叉树层序遍历
*/
public void levelOrderTraversal(TreeNode root) {
//1. 声明一个队列,将根节点入队
//2. 然后将根节点出队,在根节点出队时将根节点的左节点和右节点都入队
//3. 循环遍历队列,依次出队,在第2步中的左节点出队时,将自己视为根节点,然后将左右节点入队. 同理,右节点也一样
//4. 遍历完队列时,所有节点的左右节点都遍历完了.
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
System.out.println(node.val);
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
4. 案例
4.1 二叉树的最大深度
根节点的最大深度=左节点最大深度+右节点最大深度+1
这就非常适合递归,直接递归安排.
/**
* 二叉树的最大深度
* 思路: 比较左子树的最大深度和右子树的最大深度,
* 左子树的最大深度同样也适用于这种思路,右子树的最大深度同样也适用于这种思路
* 这就很适合递归,在访问到空节点时退出.
* 最后深度需要+1,因为需要计算上根节点.
*/
public static int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
4.2 记录每一层的所有元素
有时候我们需要记录每一层上的所有元素,这时我们可以在上面二叉树层序遍历的基础上,稍稍改进一下即可: 遍历一层的时候,先记录这层的元素个数,再依次添加到记录的集合中,顺便把这些元素的左右节点入队. 继续遍历下一层.
/**
* 二叉树层序遍历 且记录每一层的所有元素
*
* @param root 二叉树根节点
*/
public List<List<TreeNode>> levelOrderTraversals(TreeNode root) {
Queue<TreeNode> queue = new LinkedList<>();
List<List<TreeNode>> tree = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int size = queue.size();
LinkedList<TreeNode> levels = new LinkedList<>();
for (int i = 0; i < size; i++) {
TreeNode poll = queue.poll();
levels.add(poll);
if (poll.left != null) {
queue.offer(poll.left);
}
if (poll.right != null) {
queue.offer(poll.right);
}
}
tree.add(levels);
}
return tree;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26