sgu220Little Bishops(dp)

版权声明:转我原创记得说你是我的脑残粉哟 https://blog.csdn.net/zjy2015302395/article/details/77564617

题意:

在n*n的棋盘上放K个象,使得两两之间不互相攻击。有多少种放法?

tip:

棋盘按照(i+j)的奇偶黑白染色,则在黑色格子中放的象不可能攻击到白色格子,分开考虑并将棋盘翻转45度。(旋转后就是一行一列只能放一个)
这里写图片描述

f[i][j]=f[i-1][j]+f[i-1][j-1]*(a[i]-(j-1))
f[i][j]表示前i行放j个车的方案数,a[i]表示第i行的可放位置数。最后枚举在黑色格子中放置的象的个数,剩下的象放在白色格子中。
因为格子先增后减:
一个是:cnt = (i+1)/2 * 2-1;
另一个是:cnt = i/2 * 2;且少一行(2~n)

#include <cstdio>
#include <iostream>
#include <cmath>
#include <cstring>
using namespace std;
typedef long long LL;
const int maxn = 12;
const int maxm = maxn*maxn;
LL n,m,dp1[maxn][maxm],dp2[maxn][maxm];
void init(){
    memset(dp1,0,sizeof(dp1));
    memset(dp2,0,sizeof(dp2));
    dp1[0][0] = dp2[1][0] = 1;
}
void sov(){
    for(LL i = 1; i <= n ; i++){
        dp1[i][0] = dp1[i-1][0];
        LL cnt = (i+1)/2 * 2-1;
        for(LL j = 1; j <= (min(cnt,m)) ; j++ )
            dp1[i][j] = dp1[i-1][j]+dp1[i-1][j-1] * (cnt-j+1);
    }

    for(LL i = 2; i <= n ; i++){
        dp2[i][0] = dp2[i-1][0];
        LL cnt = i/2 * 2;
        for(LL j = 1; j <= min(cnt,m) ; j++)
            dp2[i][j] = dp2[i-1][j] + dp2[i-1][j-1] * (cnt-j+1);
    }
}
void print(){
    LL ans = 0;
    for(int i = 0 ; i <= m ; i++){
        ans += dp1[n][i] * dp2[n][m-i];
    }
    printf("%lld\n",ans);
}
int main(){
    while(~scanf("%lld%lld",&n,&m)){
        if(n == 0 && m == 0)    break;
        init();
        sov();
        print();
    }
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页