sgu224Little Queens 225. Little Knights

题意：

n*n（n<=10）的棋盘，求出放置m(m<=n*n)个皇后的方案数。

tip：

dfs(当前行号,列状态(哪个可以选可以不选），左上来的（哪个可以选可以不选），右上来的（哪个可以选可以不选），已放置棋子数）

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;

int n,sum,bound,m;
void dfs(int step , int cal, int l, int r, int num) {
int pos, p, i;
if (step > n){
if(num == m) sum++;
return;
}
dfs(step + 1, cal, l>>1, r<<1, num);
if (cal != bound){
pos = (bound & (~ (cal|l|r)));
while (pos != 0){
p = pos & -pos;//last "one"
pos = pos - p;
dfs (step+1,cal|p,(l|p)>>1,(r|p)<<1,num+1);
}
}
}
int main() {
//  int p =8&-8;
//  cout <<p<<endl;
scanf("%d%d",&n,&m);
bound = (1<<n) - 1;
dfs(1,0,0,0,0);
printf("%d",sum);
}


tip：

#include <cstdio>
#include <cstring>
#include <iostream>
#define LL long long
using namespace std;
LL  mark[110]={1,100,4662,135040,2732909,41199404,481719518,4491423916,34075586550,213628255072,1120204619108,4961681221524,18715619717199,60541371615660,168976761361446,409191804533576,864172675710439,1599730843649564,2609262108838924,3770687313420780,4857550050070531,5616928666465104,5874943705896600,5604501518609804,4917655076255841,3999855946779732,3034690618677388,2156485957257040,1437827591264317,899278231344296,526753407546620,288274613750624,146990556682887,69626509814580,30542906352994,12366448408056,4604442057431,1569983914256,487876545370,137395261280,34831261750,7884855000,1578162590,275861904,41455966,5246412,543534,44244,2652,104,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int state[30000];
int fstate[(1<<20)+1000];
int statenum =0 ;
LL f[2][29000][52];
int n,k;
int bitnum(int x){
int sum =0;
while(x){
int  t = x&(-x);
sum++;
x -= t;
}
return sum;
}
void init_state(){
statenum =0;
int line1 ;
int line2 ;
for(int i = 0 ;i < (1<<(2*n) ) ;i++){
line2 = i>>n;
line1 = i- (line2 << n);
if(line2&(line1<<2))    continue;
if(line2&(line1>>2))    continue;
statenum ++;
state[statenum]= i;
fstate[i] =statenum;
}
}
int maxidx[20]={0,1,5,6,9,14,18,26,32,42,51};
void dfs(int r , int  i,int j, int  lev,int num){
int line1 = ( j>>n );
int line2 =  (line1<<n);
line2 = j - line2;
if(lev == n){
for(int t = num;t <= maxidx[n];t++){
int tmp = (line2<<n)+i;
f[r%2][fstate[tmp]][t] += f[(r+1)%2][fstate[j]][t-num];
}
return ;
}
int st = (line1>>1)|(line1<<1)|(line2>>2)|(line2<<2);

dfs(r,i,j,lev+1,num);
if((st&(1<<lev)) == 0){
dfs(r,i|(1<<lev),j,lev+1,num+1);
}
}

void sov(){
if(n == 10){
cout << mark[k]<<endl;
return ;
}
if(k > maxidx[n]){
cout << 0 <<endl;;
return ;
}
init_state();
memset(f,0,sizeof(f));
for(int  i = 1;i <= min(statenum,(1<<n)); i++){
f[1][i][bitnum(state[i])]=1;
}
f[1][1][0]=1;
for(int r=1;r<n;r++){
memset(f[(r+1)%2],0,sizeof(f[(r+1)%2]));
for(int j = 1;j <= statenum;j++){
dfs(r+1,0,state[j],0,0);
}
}
LL ans =  0;
for(int i = 1;i <= statenum;i++){
ans +=  f[n%2][i][k];
}
cout <<ans<<endl;;
}

int main(){
cin >> n>>k;
sov();
return 0 ;
}