sgu236Greedy Path(最优比例路径)

题意:

给出一个有向图,每条边有一个权值和时间花费。如果图中无环,输出0,如果有环,找出一个最大的环,最大的意思是环上的权和 / 时间和 最大。

tip:

最优比例的题一般二分答案,把题目就变为询问是否存在一个环使得Σcost/Σtime>=k
整理有:
Σ(k∗time[v]−cost[v]) <= 0
转换为spfa判负环。

输出路径:记录下返回时那个被加了n次得点,一定是负环里的,记录pre。。。从这个点往前找,出现两次的,加入答案,走到已经出现两次的,说明这个环走回来了。。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = 60;
const double eps = 1e-10;
int head[maxn],tot,n,m,u,v;
double c,t,tmp;
const int maxm = maxn*maxn;
struct node{
    int v,next;
    double c,t;
}edges[maxm];
void add(int u,int v,double c,double t){
    edges[tot].v = v;edges[tot].c = c;edges[tot].t = t;edges[tot].next = head[u];head[u] = tot++;
}
void init(){
    tot = 0 ;memset(head,-1,sizeof(head));
    scanf("%d%d",&n,&m);
    for(int i = 0 ; i < m ; i++){
        scanf("%d%d%lf%lf",&u,&v,&c,&t);
        add(u,v,c,t);
    }
}
bool inq[maxn];
double dis[maxn];
int num[maxn],pre[maxn];
int spfa(double mid){
    queue<int>q;
    for(int i = 1;i <= n;i++){
        q.push(i);
        inq[i] = true;
        num[i] = 0;
        dis[i] = 0.0;
    }
    while(!q.empty()){
        int tmp = q.front();q.pop();
        inq[tmp] = false;
        for(int k = head[tmp];k != -1;k = edges[k].next){
            if(dis[edges[k].v] > eps+dis[tmp]+edges[k].t*mid-edges[k].c){
                dis[edges[k].v] = dis[tmp]+edges[k].t*mid-edges[k].c;
                pre[edges[k].v] = tmp;
                if(!inq[edges[k].v]){
                    inq[edges[k].v] = true;
                    q.push(edges[k].v);
                    num[edges[k].v]++;
                    if(num[edges[k].v] > n-1)       return edges[k].v;
                }
            }
        }
    }
    return 0;
}
void sov(){
    double L = 0,R = 1e10;
    while(fabs(R - L) > eps){
        double mid = (L+R)/2;
        if(spfa(mid)){
            tmp = mid;
            L = mid;
        }
        else    R = mid;
    }
}
int cnt[maxn],ans[maxn];
void print(){
    int u = spfa(tmp);
    if(u == 0){
        printf("0\n");return ;
    }
    int tt = 0;
    memset(cnt,0,sizeof(cnt));

    while(cnt[u] <= 1){
        cnt[u]++;
        if(cnt[u] == 2) ans[tt++] = u;
        u = pre[u];
    }
    printf("%d\n",tt);
    for(int i = tt-1; i >= 0 ; i--){
        printf("%d%c",ans[i],i == 0?'\n':' ');
    }
}
int main(){
    init();
    sov();
    print();
}
阅读更多
版权声明:转我原创记得说你是我的脑残粉哟 https://blog.csdn.net/zjy2015302395/article/details/77751765
个人分类: acm 基本算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭