几个模板都是在线性筛素数基础上扩展,根据各个函数特性来筛
i%prime[j]是关键步骤,说明当前i已经是合数,而且已经被筛过了
一.欧拉函数:
①,p为素数
②如果q mod p!=0 , ,p、q互质,这是积性函数性质,由①得phi( pq) =phi(q)*( p-1),
③如果q mod p == 0, 那么 phi(q* p) == phi(q)*p (完整证明略,与上面查了)
二.莫比乌斯函数:见我另一篇,并讲了莫比乌斯反演
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e7;//一般5e5,看题目
int prime[N+20],mu[N+20],phi[N+20],cnt;
int vis[N+20];
void get_phi()
{
ll cnt=0;
ll phi[1]=1;
for(ll i=2;i<=N;i++)
{
if(!vis[i])
{
prime[++cnt]=i;//++前写在面
phi[i]=i-1;//素数 p欧拉函数=p-1
}
for(ll j=1;prime[j]*i<=N&&j<=cnt;j++)//不越两界
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)
{
phi[i*prime[j]] =phi[i]*prime[j];
break;
}
else
{
phi[i*prime[j]]=phi[i]*(prime[j]-1);//积性函数性质
}
}
}
}
void get_mu()
{
mu[1]=1;
ll cnt=0;
for(ll i=2;i<=N;i++)
{
if(!vis[i]) {
prime[++cnt]=i;//++放前面
mu[i]=-1;//自己就是一个素因子
}
for(ll j=1;prime[j]*i<=N&&j<=cnt;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
//mu[i*prime[j]]=0;//其实if里面还应写这项,但全局变量初始化为0
else mu[i*prime[j]]=-mu[i];//多一个素因子变正负
}
}
}
int main()
{
get_phi();
get_mu();
for(int i=1;i<=10;i++){
cout<<prime[i]<<endl;
}
cout<<"欧拉"<<endl;
for(int i=1;i<=10;i++){
cout<<phi[i]<<endl;
}
cout<<"莫比乌斯"<<endl;
for(int i=1;i<=10;i++){
cout<<mu[i]<<endl;
}
}
分解素因子(注意这是复杂度)
for(int i=0; i<cnt; i++)
{
if(n==1)break;
if(n%prime[i]==0)
{
printf("%d",prime[i]);
n/=prime[i];
count=1;
flag=0;
while(n%prime[i]==0)
{
if(n==0)break;
if(!flag)printf("^");
n/=prime[i];
count++;
flag=1;
}
if(flag)printf("%d",count);
if(n!=1)printf("*");
}
}