HRY and mobius 19华工I--莫比乌斯函数性质与杜教筛

杜教筛模板链接

 

华工题目链接

 

万恶之源--bzoj2440  完全平方数  应该是这道题前身。

进阶版--【SPOJ】DIVCNT2

 

题意:  给n,k,   求\sum_{i=1}^{n}\mu^{k} (i)

一.核心

莫比乌斯函数平方及以上因子=0,无平方因子(即素因子次数最大为1)=\pm 1,如果都当成1来算,他们前缀和不正是:

\sum_{i=1}^{n}\mu^{2} (i)等价于小于等于n,不含平方因子的个数和

 

二.化简证明:

 

第一种:容斥

莫比乌斯函数本质为容斥系数出发(不理解见链接)

求不含平方因子的个数和,容斥表达=1的平方的倍数的数(全部数)-2的平方的倍数的数-3的平方的倍数的数+6平方的的倍数的数(减2和3平方的倍数的时候减多了一部分,加回来)...数学上可以写成是\sum_{d=1}^{\sqrt{n}} x*\frac{n}{d^{2}},x就是容斥系数,刚好就是莫比乌斯函数。

因此\sum\limits_{d=1}^{\sqrt n}\mu(d)\lfloor\frac{n}{d^2}\rfloor=n-\sum\limits_{d=2}^{\sqrt n}\mu(d)\lfloor\frac{n}{d^2}\rfloor

 

 

第二种:严谨证明

\sum\limits_{i=1}^{n}\mu^{2}(i)=\sum\limits_{i=1}^{n}\sum\limits_{d^2|i}\mu(d)=\sum\limits_{d=1}^{\sqrt n}\mu(d)\lfloor\frac{n}{d^2}\rfloor

①第一个等号怎么来的?

②第二个等号:用d消去i,常见转换

 

(可能可行?)猜想--第三种:狄利克雷卷积构造g(x)套杜教筛

好像狄利克雷卷积只能结合一次...所以下面写法应该不对,先写出来吧。

\mu *\mu =(\mu *id*I)*(\mu *id*I)= (\varphi *I)^{2}=id^{2}

g(x)=(id*I)^{2}=id^{2}

 

三.代码

注意除了prime其他用long long

#include <bits/stdc++.h>
//#include<tr1/unordered_map>
using namespace std;
//using namespace std::tr1;//头文件和std都要加,c++11可用
 
typedef long long ll;
typedef unsigned long long ull;
const int N = 5e6+5;

 
ll mu[N],phi[N],mu2[N];//mu用来存前缀和
int prime[N];
int vis[N];
map<ll,ll>ansmu,ansphi,ansmu2;//数组不够大,额外开,需要map
//unorder_map比普通map少了排序,会快一些 
 
inline int read() {   //输入挂
    ll X=0,w=1; char c=getchar();
    while (c<'0'||c>'9') { if (c=='-') w=-1; c=getchar(); }
    while (c>='0'&&c<='9') X=X*10+c-'0',c=getchar();
    return X*w;
}
 
void init()
{
	int cnt=0;
	mu[1]=mu2[1]=1;
	for(int i=2;i<=N;i++)//统一ll和int!!!
	{
		if(!vis[i])    
		{
			prime[++cnt]=i;//++写在前面 
			mu[i]=-1;//素数  只有它本身一个素因子
			mu2[i]=-1;
		} 
		for(int j=1;prime[j]*i<=N&&j<=cnt;j++)//不越两界 
		{
			vis[i*prime[j]]=1;
			if(i%prime[j]==0)
			{
				//mu[i*prime[j]]=0;//初始化为0所以这项可有可无 
					break;
			}
			
				else
				{
					
					mu[i*prime[j]]=-mu[i];//多一个素因子变正负  
					mu2[i*prime[j]]=-mu2[i];
				}
				   
		}
	}
	for(int i=1;i<=N;i++)mu[i]+=mu[i-1];//前缀和 
}

ll S_mu(ll n)
{
	if(n<N)return mu[n];//同上
	if(ansmu[n])return ansmu[n];
	ll ans=1;
	for(ll l=2,r;l<=n;l=r+1)
	   r=n/(n/l) ,ans-=(r-l+1)*S_mu(n/l);  //I*mu
	return ansmu[n]=ans;
}

ll S_mu2(ll n)
{

		ll t=sqrt(n);
		ll ans=0;
		for(ll i=1;i<=t;i++){
			if(n/(i*i)==0)break;//不剪枝也不会TLE 
			ans+=mu2[i]*(n/(i*i));
		}
		return ans;
	
}
 
 
int main()
{
init();
int T=read();
ll n,k;

while(T--)
{
	//ll n=read();	ll k=read();//如果用输入挂也要改ll
 
	scanf("%lld %lld",&n,&k);
	if(k==0)  printf("%lld\n",n);
	else if(k%2==1)printf("%lld\n",S_mu(n));
	else printf("%lld\n",S_mu2(n));
 } 
 return 0;
 
}

 

 

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值