几个要点:
流:木桶效应
增广路:流的子集
反向边:可能只是某段路反悔
dinic:先bfs分层,再严格按层次dfs,理论复杂度O(n^2*m),实际快些
//Dinic网络最大流模板
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int inf=1<<30;
const int maxn=10101;
int dep[maxn];//分层
int head[10101];
int cnt=0;
int n,m,s,t,ans;
struct Node{
int v;
int w;
int next;
}node[200100];
inline void addedge(int u,int v,int w){
node[cnt].v=v;
node[cnt].w=w;
node[cnt].next=head[u];
head[u]=cnt++;//cnt从0开始
}
inline int Read(){
int x=0;char c=getchar();
while(c>'9'||c<'0')c=getchar();
while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
return x;
}
bool bfs(){
memset(dep,0x3f3f3f3f,sizeof(dep));
dep[s]=0;
queue<int>q;
q.push(s);
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=head[u];~i;i=node[i].next){
int v=node[i].v;
if(dep[v]>dep[u]+1&&node[i].w){
dep[v]=dep[u]+1;//分层,多个层编号取最小的
q.push(v);
}
}
}
if(dep[t]!=0x3f3f3f3f)return 1;
return 0;
}//给增广路上的点分层
int dfs(int u,int flow){ //这里类似EK的bfs
int tmp=0;
if(u==t)return flow;//A。能到
for(int i=head[u];~i;i=node[i].next){
int v=node[i].v;
if(node[i].w&&dep[v]==dep[u]+1){
tmp=dfs(v,min(flow,node[i].w));//dfs看能不能到终点
//不能就return 0,能就return一个正值
if(tmp==0)continue;
node[i].w-=tmp;
node[i^1].w+=tmp;//从0开始就为了反向边刚好相邻
return tmp;//这里返回答案
}
}
return 0;//B。不能到终点
}//寻找增广路
int Dinic(){
while(bfs()){
ans+=dfs(s,inf);
}
return ans;
}//Dinic寻找最大流
int main(){
memset(head,-1,sizeof(head));
n=Read(),m=Read(),s=Read(),t=Read();
int u,v,w;
for(int i=1;i<=m;i++)u=Read(),v=Read(),w=Read(),addedge(u,v,w),addedge(v,u,0);
printf("%d",Dinic());
return 0;
}
当然图论最重要的建模,以后会讲。