划分树版本:
#include<iostream>
#include<string.h>
#include<algorithm>
#include<stdio.h>
#define MAXN 100002
#define MLOG 19
using namespace std;
int tree[MLOG][MAXN],cntleft[MLOG][MAXN],sorted[MAXN];
void buildtree(int lef,int rig,int deep)
{
if(lef==rig)return;
int mid=(lef+rig)>>1,same=0,lpos=lef,rpos=mid+1;
for(int i=lef;i<=rig;i++)
if(tree[deep][i]<sorted[mid])same++;
same=mid-lef+1-same;
for(int i=lef;i<=rig;i++)
{
if(tree[deep][i]<sorted[mid]||
(tree[deep][i]==sorted[mid]&&(same--)>0))
{
tree[deep+1][lpos++]=tree[deep][i];
cntleft[deep][i]=cntleft[deep][i-1]+1;
}
else
{
tree[deep+1][rpos++]=tree[deep][i];
cntleft[deep][i]=cntleft[deep][i-1];
}
}
buildtree(lef,mid,deep+1);
buildtree(mid+1,rig,deep+1);
}
int query(int lef,int rig,int qlef,int qrig,int deep,int k)
{//区间总长l,r,查询ql至qr到第k小数
while(lef<rig)
{
int mid=(lef+rig)>>1,newl,newr;
int temp=cntleft[deep][qrig]-cntleft[deep][qlef-1];
if(temp>=k)
{
newl=cntleft[deep][qlef-1]-cntleft[deep][lef-1]+lef;
newr=newl+temp-1;
return query(lef,mid,newl,newr,deep+1,k);
}
else
{
newr=qrig+cntleft[deep][rig]-cntleft[deep][qrig];
newl=newr-(qrig-qlef-temp);
return query(mid+1,rig,newl,newr,deep+1,k-temp);
}
}
return tree[deep][qlef];
}
int nextint()
{
bool flag=0;
char ch;
while(ch=getchar())
{
if(ch=='-')
flag=1;
if(ch>='0'&&ch<='9')
break;
}
int ans=ch-'0';
while(ch=getchar())
{
if(ch<'0'||ch>'9')break;
ans*=10,ans+=ch-'0';
}
if(flag==1)
ans=-ans;
return ans;
}
//注意初始化cntleft,排序sorted,buildtree(1,n,0)
int main()
{
int cas;
cas=1;
while(cas--)
{
memset(cntleft,0,sizeof(cntleft));
int n,m;
n=nextint();
m=nextint();
for(int i=1;i<=n;i++)
{
sorted[i]=nextint();
tree[0][i]=sorted[i];
}
sort(sorted+1,sorted+n+1);
buildtree(1,n,0);
int a,b,c;
for(int i=0;i<m;i++)
{
a=nextint();
b=nextint();
c=nextint();
printf("%d\n",query(1,n,a,b,0,c));
}
}
return 0;
}
归并树版本
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=100010;
const int DEEP=20;
int seq[DEEP][N]; //归并树
int a[N], n, m;
struct node
{
int l, r, mid;
} tree[N*4]; //线段树
//线段树+归并树一起建了,实际上二者的过程一样。。
void build(int l, int r, int p, int deep)
{
tree[p].l = l;
tree[p].r = r;
tree[p].mid = (l+r)>>1;
if(l==r)
{
seq[deep][l] = a[l];
return;
}
build(l, tree[p].mid, p*2, deep+1);
build(tree[p].mid+1, r, p*2+1, deep+1);
//归并过程
int i, j, k;
for(i=l, j=tree[p].mid+1, k=l; i<=tree[p].mid && j<=r; )
{
if(seq[deep+1][i]>seq[deep+1][j])
seq[deep][k++] = seq[deep+1][j++];
else
seq[deep][k++] = seq[deep+1][i++];
}
while(i<=tree[p].mid)
seq[deep][k++] = seq[deep+1][i++];
while(j<=r)
seq[deep][k++] = seq[deep+1][j++];
}
//通过二分枚举,返回key在本区间大于多少个数
//注意:任何一个通过线段树最终到达的区间一定是已经排好序了的,所以可以通过二分求
int counthelp(int l, int r, int p, int key, int deep)
{
int mid;
while(l<=r)
{
mid = (l+r)>>1;
if(seq[deep][mid]<key)
l = mid+1;
else
r = mid-1;
}
return r-tree[p].l+1;
}
//返回key在[l, r]总区间内大于几个数
int count(int l, int r, int p, int key, int deep)
{
if(tree[p].l==l && tree[p].r==r)
{
return counthelp(l, r, p, key, deep);
}
if(r<=tree[p].mid)
return count(l, r, p*2, key, deep+1);
else if(l>tree[p].mid)
return count(l, r, p*2+1, key, deep+1);
else
{
return count(l, tree[p].mid, p*2, key, deep+1)+count(tree[p].mid+1, r, p*2+1, key, deep+1);
}
}
//返回在通过二分枚举后得到的结果。。。
int query(int ll, int rr, int cnt)
{
int mid, tmp;
int l = 1;
int r = n;
while(l<=r)
{
mid = (l+r)>>1;
tmp = count(ll, rr, 1, seq[1][mid], 1);
if(tmp>=cnt)
r = mid-1;
else
l = mid+1;
}
return seq[1][l-1];
}
int main()
{
int i, x, y, cnt;
int t;
cin >> t;
while(t--)
{
scanf("%d %d", &n, &m);
for(i=1; i<=n; i++)
scanf("%d", &a[i]);
build(1, n, 1, 1);
while(m--)
{
scanf("%d%d%d", &x, &y, &cnt);
printf("%d\n", query(x, y, cnt));
}
}
return 0;
}
块链神马的以后填坑。。。
可持久化线段树什么的以后填坑。。。