第一章 入门概述
1.1 是什么
Mycat是数据库中间件
1、数据库中间件
中间件:是一类连接软件和应用的计算机软件,以便软件各部件之间的沟通。
例子:Tomcat, web中间件。
数据库中间件:连接java应用的应用程序和数据库。
2、为什么要用Mycat?
1 java与数据库紧耦合
2 高访问量高并发对数据库的压力
3 读写请求数据不一致
3、Mycat原理
简单来说就是拦截用户发来的SQL语句,对SQL语句做了一些特定的分析,如分片分析,路由分析,读写分离分析,缓存分析等,然后将此SQL发往后端的真实数据库,并将返回的结果做适当处理,最终返回给用户。
第二章 安装启动
1.copy文件。修改配置
docker run --name mycat --privileged=true -p 8066:8066 -p 9066:9066 -d longhronshens/mycat-docker
docker cp mycat:/usr/local/mycat/conf /mydata/mycat
修改配置文件:
schema.xml
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100" dataNode="dn1" >
</schema>
<dataNode name="dn1" dataHost="host1" database="testdb" />
<dataHost name="host1" maxCon="1000" minCon="10" balance="1"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM1" url="192.168.31.52:3306" user="root"
password="root12">
<!-- can have multi read hosts -->
<readHost host="hostS2" url="192.168.31.52:3307" user="root" password="root12" />
</writeHost>
</dataHost>
</mycat:schema>
server.xml:
<user name="mycat">
<property name="password">root12</property>
<property name="schemas">TESTDB</property>
</user>
启动并挂载配置
docker run --name mycat -v /mydata/mycat/schema.xml:/usr/local/mycat/conf/schema.xml -v /mydata/mycat/rule.xml:/usr/local/mycat/conf/rule.xml -v /mydata/mycat/server.xml:/usr/local/mycat/conf/server.xml --privileged=true -p 8066:8066 -p 9066:9066 -e MYSQL_ROOT_PASSWORD=root -d longhronshens/mycat-docker
第三章 搭建读写分离
修改的balance属性,通过此属性配置读写分离的类型
负载均衡类型,目前的取值有4 种:
(1) balance="0", 不开启读写分离机制, 所有读操作都发送到当前可用的 writeHost 上。
(2) balance="1",全部的 readHost 与 stand by writeHost 参与 select 语句的负载均衡,简单的说,当双主双从
模式(M1->S1, M2->S2,并且 M1 与 M2 互为主备),正常情况下, M2,S1,S2 都参与 select 语句的负载均衡。
(3) balance="2",所有读操作都随机的在 writeHost、 readhost 上分发。
(4) balance="3",所有读请求随机的分发到 readhost 执行, writerHost 不负担读压力
配置主从复制
https://blog.csdn.net/zk86547462/article/details/112922879
schema.xml实例
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100" dataNode="dn1">
</schema>
<dataNode name="dn1" dataHost="host1" database="mycat_test" />
<dataHost name="host1" maxCon="1000" minCon="10" balance="2"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM1" url="106.55.168.234:3306" user="root"
password="zk2000208.">
<!-- can have multi read hosts -->
<readHost host="hostS2" url="118.31.107.177:3306" user="root"
password="zk2000208." />
</writeHost>
</dataHost>
</mycat:schema>
第四章 垂直拆分——分库
一个数据库由很多表的构成,每个表对应着不同的业务,垂直切分是指按照业务将表进行分类,分布到不同 的数据库上面,这样也就将数据或者说压力分担到不同的库上面,如下图:
系统被切分成了,用户,订单交易,支付几个模块。
4.1 如何划分表
一个问题:在两台主机上的两个数据库中的表,能否关联查询?
答案:不可以关联查询
分库的原则: 有紧密关联关系的表应该在一个库里,相互没有关联关系的表可以分到不同的库里。
#客户表 rows:20万
CREATE TABLE customer(
id INT AUTO_INCREMENT,
NAME VARCHAR(200),
PRIMARY KEY(id)
);
#订单表 rows:600万
CREATE TABLE orders(
id INT AUTO_INCREMENT,
order_type INT,
customer_id INT,
amount DECIMAL(10,2),
PRIMARY KEY(id)
);
#订单详细表 rows:600万
CREATE TABLE orders_detail(
id INT AUTO_INCREMENT,
detail VARCHAR(2000),
order_id INT,
PRIMARY KEY(id)
);
#订单状态字典表 rows:20
CREATE TABLE dict_order_type(
id INT AUTO_INCREMENT,
order_type VARCHAR(200),
PRIMARY KEY(id)
);
以上四个表如何分库?客户表分在一个数据库,另外三张都需要关联查询,分在另外一个数据库。
4.2 实现分库
1、 修改 schema 配置文件
…
<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100" dataNode="dn1">
<table name="customer" dataNode="dn2" ></table>
</schema>
<dataNode name="dn1" dataHost="host1" database="orders" />
<dataNode name="dn2" dataHost="host2" database="orders" />
<dataHost name="host1" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1"
slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM1" url="192.168.140.128:3306" user="root"
password="123123">
</writeHost>
</dataHost>
<dataHost name="host2" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1"
slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM2" url="192.168.140.127:3306" user="root"
password="123123">
</writeHost>
</dataHost>
…
#如下图
2、 新增两个空白库
分库操作不是在原来的老数据库上进行操作,需要准备两台机器分别安装新的数据库
#在数据节点 dn1、 dn2 上分别创建数据库 orders
CREATE DATABASE orders;
3、 启动 Mycat
./mycat console
4、 访问 Mycat 进行分库
#访问 Mycat
mysql -umycat -p123456 -h 192.168.140.128 -P 8066
#切换到 TESTDB
#创建 4 张表
#查看表信息,可以看到成功分库
第五章 水平拆分——分表
相对于垂直拆分,水平拆分不是将表做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中 包含一部分数据。简单来说,我们可以将数据的水平切分理解为是按照数据行的切分,就是将表中的某些行切分 到一个数据库,而另外的某些行又切分到其他的数据库中,如图:
5.1 实现分表
1、 选择要拆分的表
MySQL 单表存储数据条数是有瓶颈的,单表达到 1000 万条数据就达到了瓶颈,会影响查询效率,需要进行水平拆分(分表) 进行优化。
例如:例子中的 orders、 orders_detail 都已经达到 600 万行数据,需要进行分表优化。
2、 分表字段
以 orders 表为例,可以根据不同自字段进行分表
编号 | 分表字段 | 效果 |
---|---|---|
1 | id(主键、 或创建时间) | 查询订单注重时效,历史订单被查询的次数少,如此分片会造成一个节点访问多,一个访问少,不平均。 |
2 | customer_id(客户 id) | 根据客户 id 去分,两个节点访问平均,一个客户的所 有订单都在同一个节点 |
3、 修改配置文件 schema.xml
#为 orders 表设置数据节点为 dn1、 dn2, 并指定分片规则为 mod_rule(自定义的名字)
<table name="orders" dataNode="dn1,dn2" rule="mod_rule" ></table>
#如下图
4、 修改配置文件 rule.xml
#在 rule 配置文件里新增分片规则 mod_rule,并指定规则适用字段为 customer_id,
#还有选择分片算法 mod-long(对字段求模运算) , customer_id 对两个节点求模,根据结果分片
#配置算法 mod-long 参数 count 为 2,两个节点
<tableRule name="mod_rule">
<rule>
<columns>customer_id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
…
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<property name="count">2</property>
</function>
#如下图:
5、 在数据节点 dn2 上建 orders 表
6、 重启 Mycat,让配置生效
7、 访问 Mycat 实现分片
#在 mycat 里向 orders 表插入数据, INSERT 字段不能省略
INSERT INTO orders(id,order_type,customer_id,amount) VALUES (1,101,100,100100);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(2,101,100,100300);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(3,101,101,120000);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(4,101,101,103000);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(5,102,101,100400);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(6,102,100,100020);
#在mycat、 dn1、 dn2中查看orders表数据,分表成功
5.2 Mycat 的分片 “join”
rders 订单表已经进行分表操作了,和它关联的 orders_detail 订单详情表如何进行 join 查询。我们要对 orders_detail 也要进行分片操作。 Join 的原理如下图:
1、 ER 表
Mycat 借鉴了 NewSQL 领域的新秀 Foundation DB 的设计思路, Foundation DB 创新性的提出了 Table Group 的概念,其将子表的存储位置依赖于主表,并且物理上紧邻存放,因此彻底解决了JION 的效率和性能问 题,根据这一思路,提出了基于 E-R 关系的数据分片策略,子表的记录与所关联的父表记录存放在同一个数据分片上。
#修改 schema.xml 配置文件
…
<table name="orders" dataNode="dn1,dn2" rule="mod_rule" >
<childTable name="orders_detail" primaryKey="id" joinKey="order_id" parentKey="id" />
</table>
…
#在dn2 创建 orders_detail 表
#重启 Mycat
#访问 Mycat 向 orders_detail 表插入数据
INSERT INTO orders_detail(id,detail,order_id) values(1,'detail1',1);
INSERT INTO orders_detail(id,detail,order_id) VALUES(2,'detail1',2);
INSERT INTO orders_detail(id,detail,order_id) VALUES(3,'detail1',3);
INSERT INTO orders_detail(id,detail,order_id) VALUES(4,'detail1',4);
INSERT INTO orders_detail(id,detail,order_id) VALUES(5,'detail1',5);
INSERT INTO orders_detail(id,detail,order_id) VALUES(6,'detail1',6);
#在mycat、 dn1、 dn2中运行两个表join语句
Select o.*,od.detail from orders o inner join orders_detail od on o.id=od.order_id;
2、 全局表
在分片的情况下,当业务表因为规模而进行分片以后,业务表与这些附属的字典表之间的关联,就成了比较 棘手的问题,考虑到字典表具有以下几个特性:
① 变动不频繁
② 数据量总体变化不大
③ 数据规模不大,很少有超过数十万条记录
鉴于此, Mycat 定义了一种特殊的表,称之为“全局表”,全局表具有以下特性:
① 全局表的插入、更新操作会实时在所有节点上执行,保持各个分片的数据一致性
② 全局表的查询操作,只从一个节点获取
③ 全局表可以跟任何一个表进行 JOIN 操作
将字典表或者符合字典表特性的一些表定义为全局表,则从另外一个方面,很好的解决了数据JOIN 的难题。 通过全局表+基于 E-R 关系的分片策略, Mycat 可以满足 80%以上的企业应用开发
#修改 schema.xml 配置文件
…
<table name="orders" dataNode="dn1,dn2" rule="mod_rule" >
<childTable name="orders_detail" primaryKey="id" joinKey="order_id" parentKey="id" />
</table>
<table name="dict_order_type" dataNode="dn1,dn2" type="global" ></table>
…
#在dn2 创建 dict_order_type 表
#重启 Mycat
#访问 Mycat 向 dict_order_type 表插入数据
INSERT INTO dict_order_type(id,order_type) VALUES(101,'type1');
INSERT INTO dict_order_type(id,order_type) VALUES(102,'type2');
#在Mycat、 dn1、 dn2中查询表数据
5.3 常用分片规则
1、 取模
此规则为对分片字段求摸运算。 也是水平分表最常用规则。以上 orders 表采用了此规则。
2、 分片枚举
通过在配置文件中配置可能的枚举 id,自己配置分片,本规则适用于特定的场景,比如有些业务需要按照省份或区县来做保存,而全国省份区县固定的,这类业务使用本条规则。
#(1) 修改schema.xml配置文件
<table name="orders_ware_info" dataNode="dn1,dn2" rule="sharding_by_intfile" ></table>
#(2) 修改rule.xml配置文件
<tableRule name="sharding_by_intfile">
<rule>
<columns>areacode</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
…
<function name="hash-int"
class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
<property name="type">1</property>
<property name="defaultNode">0</property>
</function>
# columns:分片字段, algorithm:分片函数
# mapFile: 标识配置文件名称, type: 0为int型、 非0为String,
#defaultNode: 默认节点:小于 0 表示不设置默认节点,大于等于 0 表示设置默认节点,
# 设置默认节点如果碰到不识别的枚举值,就让它路由到默认节点,如不设置不识别就报错
#(3) 修改partition-hash-int.txt配置文件
10000=0
10010=1
#(4) 重启 Mycat
#(5) 访问Mycat创建表
#订单归属区域信息表
CREATE TABLE orders_ware_info
(
`id` INT AUTO_INCREMENT comment '编号',
`order_id` INT comment '订单编号',
`address` VARCHAR(200) comment '地址',
`areacode` VARCHAR(20) comment '区域编号',
PRIMARY KEY(id)
);
#(6) 插入数据
INSERT INTO orders_ware_info(id, order_id,address,areacode) VALUES (1,1,'北京','10000');
INSERT INTO orders_ware_info(id, order_id,address,areacode) VALUES (2,2,'天津','10010');
#(7) 查询Mycat、 dn1、 dn2可以看到数据分片效果
select * from orders_ware_info
3、 范围约定
此分片适用于,提前规划好分片字段某个范围属于哪个分片。
#(1) 修改schema.xml配置文件
<table name="payment_info" dataNode="dn1,dn2" rule="auto_sharding_long" ></table>
#(2) 修改rule.xml配置文件
<tableRule name="auto_sharding_long">
<rule>
<columns>order_id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
…
<function name="rang-long"
class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
<property name="defaultNode">0</property>
</function>
# columns:分片字段, algorithm:分片函数
# mapFile: 标识配置文件名称
#defaultNode: 默认节点:小于 0 表示不设置默认节点,大于等于 0 表示设置默认节点,
# 设置默认节点如果碰到不识别的枚举值,就让它路由到默认节点,如不设置不识别就
报错
#(3) 修改autopartition-long.txt配置文件
0-102=0
103-200=1
#(4) 重启 Mycat
#(5) 访问Mycat创建表
#支付信息表
CREATE TABLE payment_info
(
`id` INT AUTO_INCREMENT comment '编号',
`order_id` INT comment '订单编号',
`payment_status` INT comment '支付状态',
PRIMARY KEY(id)
);
#(6) 插入数据
INSERT INTO payment_info (id,order_id,payment_status) VALUES (1,101,0);
INSERT INTO payment_info (id,order_id,payment_status) VALUES (2,102,1);
INSERT INTO payment_info (id,order_id ,payment_status) VALUES (3,103,0);
INSERT INTO payment_info (id,order_id,payment_status) VALUES (4,104,1);
#(7) 查询Mycat、 dn1、 dn2可以看到数据分片效果
4、 按日期(天)分片
此规则为按天分片。 设定时间格式、范围
#(1) 修改schema.xml配置文件
<table name="login_info" dataNode="dn1,dn2" rule="sharding_by_date" ></table>
#(2) 修改rule.xml配置文件
<tableRule name="sharding_by_date">
<rule>
<columns>login_date</columns>
<algorithm>shardingByDate</algorithm>
</rule>
</tableRule>
…
<function name="shardingByDate" class="io.mycat.route.function.PartitionByDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2019-01-01</property>
<property name="sEndDate">2019-01-04</property>
<property name="sPartionDay">2</property>
</function>
# columns:分片字段, algorithm:分片函数
#dateFormat :日期格式
#sBeginDate :开始日期
#sEndDate:结束日期,则代表数据达到了这个日期的分片后循环从开始分片插入
#sPartionDay :分区天数,即默认从开始日期算起,分隔 2 天一个分区
#(3) 重启 Mycat
#(4) 访问Mycat创建表
#用户信息表
CREATE TABLE login_info
(
`id` INT AUTO_INCREMENT comment '编号',
`user_id` INT comment '用户编号',
`login_date` date comment '登录日期',
PRIMARY KEY(id)
);
#(6) 插入数据
INSERT INTO login_info(id,user_id,login_date) VALUES (1,101,'2019-01-01');
INSERT INTO login_info(id,user_id,login_date) VALUES (2,102,'2019-01-02');
INSERT INTO login_info(id,user_id,login_date) VALUES (3,103,'2019-01-03');
INSERT INTO login_info(id,user_id,login_date) VALUES (4,104,'2019-01-04');
INSERT INTO login_info(id,user_id,login_date) VALUES (5,103,'2019-01-05');
INSERT INTO login_info(id,user_id,login_date) VALUES (6,104,'2019-01-06');
#(7) 查询Mycat、 dn1、 dn2可以看到数据分片效果
5.4 全局序列
在实现分库分表的情况下,数据库自增主键已无法保证自增主键的全局唯一。为此, Mycat 提供了全局 sequence,并且提供了包含本地配置和数据库配置等多种实现方式
1、 本地文件
此方式 Mycat 将 sequence 配置到文件中,当使用到 sequence 中的配置后, Mycat 会更下classpath 中的 sequence_conf.properties 文件中 sequence 当前的值。
① 优点: 本地加载,读取速度较快
② 缺点: 抗风险能力差, Mycat 所在主机宕机后,无法读取本地文件。
2、 数据库方式(推荐)
利用数据库一个表 来进行计数累加。但是并不是每次生成序列都读写数据库,这样效率太低。Mycat 会预加载一部分号段到 Mycat 的内存中,这样大部分读写序列都是在内存中完成的。如果内存中的号段用完了 Mycat 会再向数据库要一次。
问:那如果 Mycat 崩溃了 ,那内存中的序列岂不是都没了?
是的。如果是这样,那么 Mycat 启动后会向数据库申请新的号段,原有号段会弃用。
也就是说如果 Mycat 重启,那么损失是当前的号段没用完的号码,但是不会因此出现主键重复
① 建库序列脚本
#在 dn1 上创建全局序列表
CREATE TABLE MYCAT_SEQUENCE (NAME VARCHAR(50) NOT NULL,current_value INT NOT
NULL,increment INT NOT NULL DEFAULT 100, PRIMARY KEY(NAME)) ENGINE=INNODB;
#创建全局序列所需函数
DELIMITER $$
CREATE FUNCTION mycat_seq_currval(seq_name VARCHAR(50)) RETURNS VARCHAR(64)
DETERMINISTIC
BEGIN
DECLARE retval VARCHAR(64);
SET retval="-999999999,null";
SELECT CONCAT(CAST(current_value AS CHAR),",",CAST(increment AS CHAR)) INTO retval FROM
MYCAT_SEQUENCE WHERE NAME = seq_name;
RETURN retval;
END $$
DELIMITER ;
DELIMITER $$
CREATE FUNCTION mycat_seq_setval(seq_name VARCHAR(50),VALUE INTEGER) RETURNS
VARCHAR(64)
DETERMINISTIC
BEGIN
UPDATE MYCAT_SEQUENCE
SET current_value = VALUE
WHERE NAME = seq_name;
RETURN mycat_seq_currval(seq_name);
END $$
DELIMITER ;
DELIMITER $$
CREATE FUNCTION mycat_seq_nextval(seq_name VARCHAR(50)) RETURNS VARCHAR(64)
DETERMINISTIC
BEGIN
UPDATE MYCAT_SEQUENCE
SET current_value = current_value + increment WHERE NAME = seq_name;
RETURN mycat_seq_currval(seq_name);
END $$
DELIMITER ;
#初始化序列表记录
INSERT INTO MYCAT_SEQUENCE(NAME,current_value,increment) VALUES ('ORDERS', 400000,
100);
② 修改 Mycat 配置
#修改sequence_db_conf.properties
vim sequence_db_conf.properties
#意思是 ORDERS这个序列在dn1这个节点上,具体dn1节点是哪台机子,请参考schema.xml
#修改server.xml
vim server.xml
#全局序列类型: 0-本地文件, 1-数据库方式, 2-时间戳方式。此处应该修改成1。
#重启Mycat
③ 验证全局序列
#登录 Mycat,插入数据
insert into orders(id,amount,customer_id,order_type) values(next value for
MYCATSEQ_ORDERS,1000,101,102);
#查询数据
#重启Mycat后,再次插入数据,再查询
3、 时间戳方式
全局序列ID= 64 位二进制 (42(毫秒)+5(机器 ID)+5(业务编码)+12(重复累加) 换算成十进制为 18 位数的long 类型,每毫秒可以并发 12 位二进制的累加。
① 优点: 配置简单
② 缺点: 18 位 ID 过长
4、 自主生成全局序列
可在 java 项目里自己生成全局序列,如下:
① 根据业务逻辑组合
② 可以利用 redis 的单线程原子性 incr 来生成序列,但,自主生成需要单独在工程中用 java 代码实现, 还是推荐使用 Mycat 自带全局序列。
第七章 Mycat 安全设置
7.1 权限配置
1、 user 标签权限控制
目前 Mycat 对于中间件的连接控制并没有做太复杂的控制,目前只做了中间件逻辑库级别的读写权限控制。是通过 server.xml 的 user 标签进行配置。
#server.xml配置文件user部分
<user name="mycat">
<property name="password">123456</property>
<property name="schemas">TESTDB</property>
</user>
<user name="user">
<property name="password">user</property>
<property name="schemas">TESTDB</property>
<property name="readOnly">true</property>
</user>
#如下图
2、 privileges 标签权限控制
在 user 标签下的 privileges 标签可以对逻辑库(schema)、表(table)进行精细化的 DML 权限控制。
privileges 标签下的 check 属性,如为 true 开启权限检查,为 false 不开启,默认为 false。
由于 Mycat 一个用户的 schemas 属性可配置多个逻辑库(schema) ,所以 privileges 的下级节点 schema 节点同样可配置多个,对多库多表进行细粒度的 DML 权限控制。
#server.xml配置文件privileges部分
#配置orders表没有增删改查权限
<user name="mycat">
<property name="password">123456</property>
<property name="schemas">TESTDB</property>
<!-- 表级 DML 权限设置 -->
<privileges check="true">
<schema name="TESTDB" dml="1111" >
<table name="orders" dml="0000"></table>
<!--<table name="tb02" dml="1111"></table>-->
</schema>
</privileges>
</user>
配置说明
DML 权限 | 增加(insert) | 更新(update) | 查询(select) | 删除(select) |
---|---|---|---|---|
0000 | 禁止 | 禁止 | 禁止 | 禁止 |
0010 | 禁止 | 禁止 | 可以 | 禁止 |
1110 | 可以 | 禁止 | 禁止 | 禁止 |
1111 | 可以 | 可以 | 可以 | 可以 |
测试案例
#测试案例一
# 使用mycat用户, privileges配置orders表权限为禁止增删改查(dml="0000")
# 验证是否可以查询出数据, 验证是否可以写入数据
#1、 重启mycat, 用mycat用户登录,运行命令如下:
mysql -umycat -p123456 -h 192.168.140.128 -P8066
#2、切换到TESTDB数据库,查询orders表数据,如下:
use TESTDB
select * from orders;
#3、 禁止该用户查询数据,如下图
#4、执行插入数据sql,如下:
insert into orders(id,order_type,customer_id,amount) values(8,101,101,10000);
#5、 可看到运行结果, 禁止该用户插入数据, 如下图:
7.2 SQL 拦截
firewall 标签用来定义防火墙; firewall 下 whitehost 标签用来定义 IP 白名单 , blacklist 用来定义SQL 黑名单。
1、 白名单
可以通过设置白名单, 实现某主机某用户可以访问 Mycat,而其他主机用户禁止访问。
#设置白名单
#server.xml配置文件firewall标签
#配置只有192.168.140.128主机可以通过mycat用户访问
<firewall>
<whitehost>
<host host="192.168.140.128" user="mycat"/>
</whitehost>
</firewall>
2、 黑名单
可以通过设置黑名单, 实现 Mycat 对具体 SQL 操作的拦截, 如增删改查等操作的拦截。
#设置黑名单
#server.xml配置文件firewall标签
#配置禁止mycat用户进行删除操作
<firewall>
<whitehost>
<host host="192.168.140.128" user="mycat"/>
</whitehost>
<blacklist check="true">
<property name="deleteAllow">false</property>
</blacklist>
</firewall>
可以设置的黑名单 SQL 拦截功能列表
配置项 | 缺省值 | 描述 |
---|---|---|
selelctAllow | true | 是否允许执行 SELECT 语句 |
deleteAllow | true | 是否允许执行 DELETE 语句 |
updateAllow | true | 是否允许执行 UPDATE 语句 |
insertAllow | true | 是否允许执行 INSERT 语句 |
createTableAllow | true | 是否允许创建表 |
setAllow | true | 是否允许使用 SET 语法 |
alterTableAllow | true | 是否允许执行 Alter Table 语句 |
dropTableAllow | true | 是否允许修改表 |
commitAllow | true | 是否允许执行 commit 操作 |
rollbackAllow | true | 是否允许执行 roll back 操作 |
8.2 Mycat-web 配置使用
docker安装mycat-web性能监控工具
# 拉取镜像
docker pull registry.cn-hangzhou.aliyuncs.com/zhengqing/mycat-web
# 运行
docker run --name mycat-web -d -p 8082:8082 --restart=always registry.cn-hangzhou.aliyuncs.com/zhengqing/mycat-web
三、mycat-web使用
浏览器访问你的ip:8082/mycat/ ex: www.zhengqingya.com:8082/mycat/
代码示例
server
<?xml version="1.0" encoding="UTF-8"?>
<!-- - - Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License. - You
may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0
- - Unless required by applicable law or agreed to in writing, software -
distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the
License for the specific language governing permissions and - limitations
under the License. -->
<!DOCTYPE mycat:server SYSTEM "server.dtd">
<mycat:server xmlns:mycat="http://io.mycat/">
<system>
<property name="useSqlStat">0</property> <!-- 1为开启实时统计、0为关闭 -->
<property name="useGlobleTableCheck">0</property> <!-- 1为开启全加班一致性检测、0为关闭 -->
<property name="sequnceHandlerType">2</property>
<!-- <property name="useCompression">1</property>--> <!--1为开启mysql压缩协议-->
<!-- <property name="fakeMySQLVersion">5.6.20</property>--> <!--设置模拟的MySQL版本号-->
<!-- <property name="processorBufferChunk">40960</property> -->
<!--
<property name="processors">1</property>
<property name="processorExecutor">32</property>
-->
<!--默认为type 0: DirectByteBufferPool | type 1 ByteBufferArena-->
<property name="processorBufferPoolType">0</property>
<!--默认是65535 64K 用于sql解析时最大文本长度 -->
<!--<property name="maxStringLiteralLength">65535</property>-->
<!--<property name="sequnceHandlerType">0</property>-->
<!--<property name="backSocketNoDelay">1</property>-->
<!--<property name="frontSocketNoDelay">1</property>-->
<!--<property name="processorExecutor">16</property>-->
<!--
<property name="serverPort">8066</property> <property name="managerPort">9066</property>
<property name="idleTimeout">300000</property> <property name="bindIp">0.0.0.0</property>
<property name="frontWriteQueueSize">4096</property> <property name="processors">32</property> -->
<!--分布式事务开关,0为不过滤分布式事务,1为过滤分布式事务(如果分布式事务内只涉及全局表,则不过滤),2为不过滤分布式事务,但是记录分布式事务日志-->
<property name="handleDistributedTransactions">0</property>
<!--
off heap for merge/order/group/limit 1开启 0关闭
-->
<property name="useOffHeapForMerge">1</property>
<!--
单位为m
-->
<property name="memoryPageSize">1m</property>
<!--
单位为k
-->
<property name="spillsFileBufferSize">1k</property>
<property name="useStreamOutput">0</property>
<!--
单位为m
-->
<property name="systemReserveMemorySize">384m</property>
<!--是否采用zookeeper协调切换 -->
<property name="useZKSwitch">true</property>
</system>
<!-- 全局SQL防火墙设置 -->
<!--
<firewall>
<whitehost>
<host host="127.0.0.1" user="mycat"/>
<host host="127.0.0.2" user="mycat"/>
</whitehost>
<blacklist check="false">
</blacklist>
</firewall>
-->
<user name="root">
<property name="password">123456</property>
<property name="schemas">TESTDB,TESTDB2</property>
<!-- 表级 DML 权限设置 -->
<!--
<privileges check="false">
<schema name="TESTDB" dml="0110" >
<table name="tb01" dml="0000"></table>
<table name="tb02" dml="1111"></table>
</schema>
</privileges>
-->
</user>
<user name="user">
<property name="password">user</property>
<property name="schemas">TESTDB,TESTDB2</property>
<!--是否只读-->
<property name="readOnly">true</property>
</user>
</mycat:server>
schema
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<!--读写分离-->
<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100" dataNode="dn1">
</schema>
<!--分库-->
<!--分表-->
<schema name="TESTDB2" checkSQLschema="false" sqlMaxLimit="100">
<table name="customer" dataNode="dn2" ></table>
<table name="orders" dataNode="dn2,dn3" rule="mod_rule" >
<!--er表-->
<childTable name="orders_detail" primaryKey="id" joinKey="order_id" parentKey="id" />
</table>
<!--<table name="orders_detail" dataNode="dn3" />-->
<!-- 全局表-->
<table name="dict_order_type" dataNode="dn3,dn2" type="global" />
<!--分片枚举-->
<table name="orders_ware_info" dataNode="dn2,dn3" rule="sharding_by_intfile" ></table>
<!--范围约定-->
<table name="payment_info" dataNode="dn2,dn3" ></table>
<!--按日期(天)分片-->
<table name="login_info" dataNode="dn2,dn3" rule="sharding_by_date" ></table>
<!--<table name="dictionary" primaryKey="id" autoIncrement="true" dataNode="dn1,dn2" rule="mod-long" />-->
</schema>
<dataNode name="dn1" dataHost="host1" database="mycat_test" />
<dataNode name="dn2" dataHost="host2" database="orders" />
<dataNode name="dn3" dataHost="host3" database="orders" />
<dataHost name="host1" maxCon="1000" minCon="10" balance="2"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM1" url="106.55.168.234:3306" user="root"
password="zk2000208.">
<!-- can have multi read hosts -->
<readHost host="hostS2" url="118.31.107.177:3306" user="root"
password="zk2000208." />
</writeHost>
</dataHost>
<dataHost name="host2" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM1" url="106.55.168.234:3306" user="root"
password="zk2000208.">
</writeHost>
</dataHost>
<dataHost name="host3" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM2" url="118.31.107.177:3306" user="root"
password="zk2000208.">
</writeHost>
</dataHost>
</mycat:schema>
rule
<?xml version="1.0" encoding="UTF-8"?>
<!-- - - Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License. - You
may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0
- - Unless required by applicable law or agreed to in writing, software -
distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the
License for the specific language governing permissions and - limitations
under the License. -->
<!DOCTYPE mycat:rule SYSTEM "rule.dtd">
<mycat:rule xmlns:mycat="http://io.mycat/">
<!--取模-->
<tableRule name="mod_rule">
<rule>
<columns>customer_id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<!--分片枚举-->
<tableRule name="sharding_by_intfile">
<rule>
<columns>areacode</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<!--范围约定-->
<tableRule name="auto_sharding_long">
<rule>
<columns>order_id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
<!--按日期(天)分片-->
<tableRule name="sharding_by_date">
<rule>
<columns>login_date</columns>
<algorithm>shardingByDate</algorithm>
</rule>
</tableRule>
<tableRule name="rule1">
<rule>
<columns>id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<tableRule name="rule2">
<rule>
<columns>user_id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<tableRule name="mod-long">
<rule>
<columns>id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<tableRule name="sharding-by-murmur">
<rule>
<columns>id</columns>
<algorithm>murmur</algorithm>
</rule>
</tableRule>
<tableRule name="crc32slot">
<rule>
<columns>id</columns>
<algorithm>crc32slot</algorithm>
</rule>
</tableRule>
<tableRule name="sharding-by-month">
<rule>
<columns>create_time</columns>
<algorithm>partbymonth</algorithm>
</rule>
</tableRule>
<tableRule name="latest-month-calldate">
<rule>
<columns>calldate</columns>
<algorithm>latestMonth</algorithm>
</rule>
</tableRule>
<tableRule name="auto-sharding-rang-mod">
<rule>
<columns>id</columns>
<algorithm>rang-mod</algorithm>
</rule>
</tableRule>
<tableRule name="jch">
<rule>
<columns>id</columns>
<algorithm>jump-consistent-hash</algorithm>
</rule>
</tableRule>
<function name="murmur"
class="io.mycat.route.function.PartitionByMurmurHash">
<property name="seed">0</property><!-- 默认是0 -->
<property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片 -->
<property name="virtualBucketTimes">160</property><!-- 一个实际的数据库节点被映射为这么多虚拟节点,默认是160倍,也就是虚拟节点数是物理节点数的160倍 -->
<!-- <property name="weightMapFile">weightMapFile</property> 节点的权重,没有指定权重的节点默认是1。以properties文件的格式填写,以从0开始到count-1的整数值也就是节点索引为key,以节点权重值为值。所有权重值必须是正整数,否则以1代替 -->
<!-- <property name="bucketMapPath">/etc/mycat/bucketMapPath</property>
用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的murmur hash值与物理节点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 -->
</function>
<function name="crc32slot"
class="io.mycat.route.function.PartitionByCRC32PreSlot">
<property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片 -->
</function>
<function name="hash-int"
class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
<property name="type">1</property>
<property name="defaultNode">0</property>
</function>
<function name="rang-long"
class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
<property name="defaultNode">0</property>
</function>
<function name="shardingByDate" class="io.mycat.route.function.PartitionByDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2019-01-01</property>
<property name="sEndDate">2019-01-04</property>
<property name="sPartionDay">2</property>
</function>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<!--节点数-->
<property name="count">2</property>
</function>
<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">8</property>
<property name="partitionLength">128</property>
</function>
<function name="latestMonth"
class="io.mycat.route.function.LatestMonthPartion">
<property name="splitOneDay">24</property>
</function>
<function name="partbymonth"
class="io.mycat.route.function.PartitionByMonth">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2015-01-01</property>
</function>
<function name="rang-mod" class="io.mycat.route.function.PartitionByRangeMod">
<property name="mapFile">partition-range-mod.txt</property>
</function>
<function name="jump-consistent-hash" class="io.mycat.route.function.PartitionByJumpConsistentHash">
<property name="totalBuckets">3</property>
</function>
</mycat:rule>