MyCat学习笔记

本文详细介绍了Mycat数据库中间件的使用,包括其作为数据库连接软件的角色,解决高并发和读写分离的问题。通过配置文件如schema.xml、rule.xml和server.xml,演示了Mycat的读写分离、垂直拆分、水平拆分、全局序列和权限控制等功能。同时,文章还提到了Mycat-Web这一监控工具的配置和使用。
摘要由CSDN通过智能技术生成

第一章 入门概述

1.1 是什么

Mycat是数据库中间件

1、数据库中间件

中间件:是一类连接软件和应用的计算机软件,以便软件各部件之间的沟通。
例子:Tomcat, web中间件。
数据库中间件:连接java应用的应用程序和数据库。

2、为什么要用Mycat?

1 java与数据库紧耦合
2 高访问量高并发对数据库的压力
3 读写请求数据不一致

3、Mycat原理

简单来说就是拦截用户发来的SQL语句,对SQL语句做了一些特定的分析,如分片分析,路由分析,读写分离分析,缓存分析等,然后将此SQL发往后端的真实数据库,并将返回的结果做适当处理,最终返回给用户。

第二章 安装启动

1.copy文件。修改配置

docker run --name mycat --privileged=true -p 8066:8066 -p 9066:9066 -d longhronshens/mycat-docker
 
docker cp mycat:/usr/local/mycat/conf /mydata/mycat

修改配置文件:

schema.xml

<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
 
	<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100" dataNode="dn1" >
		 
	</schema>
	 
	<dataNode name="dn1" dataHost="host1" database="testdb" />
	
	<dataHost name="host1" maxCon="1000" minCon="10" balance="1"
			  writeType="0" dbType="mysql" dbDriver="native" switchType="1"  slaveThreshold="100">
		<heartbeat>select user()</heartbeat>
		<!-- can have multi write hosts -->
		<writeHost host="hostM1" url="192.168.31.52:3306" user="root"
				   password="root12">
			<!-- can have multi read hosts -->
			<readHost host="hostS2" url="192.168.31.52:3307" user="root" password="root12" /> 
		</writeHost>
	</dataHost>
	
</mycat:schema>

server.xml:

<user name="mycat">
		<property name="password">root12</property>
		<property name="schemas">TESTDB</property>
</user>

启动并挂载配置

docker run --name mycat -v /mydata/mycat/schema.xml:/usr/local/mycat/conf/schema.xml -v /mydata/mycat/rule.xml:/usr/local/mycat/conf/rule.xml -v /mydata/mycat/server.xml:/usr/local/mycat/conf/server.xml --privileged=true -p 8066:8066 -p 9066:9066 -e MYSQL_ROOT_PASSWORD=root  -d longhronshens/mycat-docker

第三章 搭建读写分离

修改的balance属性,通过此属性配置读写分离的类型

负载均衡类型,目前的取值有4 种:
(1) balance="0", 不开启读写分离机制, 所有读操作都发送到当前可用的 writeHost 上。
(2) balance="1",全部的 readHost 与 stand by writeHost 参与 select 语句的负载均衡,简单的说,当双主双从
模式(M1->S1, M2->S2,并且 M1 与 M2 互为主备),正常情况下, M2,S1,S2 都参与 select 语句的负载均衡。
(3) balance="2",所有读操作都随机的在 writeHost、 readhost 上分发。
(4) balance="3",所有读请求随机的分发到 readhost 执行, writerHost 不负担读压力

配置主从复制
https://blog.csdn.net/zk86547462/article/details/112922879

schema.xml实例

<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">

	<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100"  dataNode="dn1">
	
	</schema>

	<dataNode name="dn1" dataHost="host1" database="mycat_test" />

	<dataHost name="host1" maxCon="1000" minCon="10" balance="2"
			  writeType="0" dbType="mysql" dbDriver="native" switchType="1"  slaveThreshold="100">
		<heartbeat>select user()</heartbeat>
		<!-- can have multi write hosts -->
		<writeHost host="hostM1" url="106.55.168.234:3306" user="root"
				   password="zk2000208.">
			<!-- can have multi read hosts -->
			<readHost host="hostS2" url="118.31.107.177:3306" user="root"
			password="zk2000208." />
		</writeHost>
	</dataHost>

</mycat:schema>

第四章 垂直拆分——分库

一个数据库由很多表的构成,每个表对应着不同的业务,垂直切分是指按照业务将表进行分类,分布到不同 的数据库上面,这样也就将数据或者说压力分担到不同的库上面,如下图:
在这里插入图片描述

系统被切分成了,用户,订单交易,支付几个模块。

4.1 如何划分表

一个问题:在两台主机上的两个数据库中的表,能否关联查询?
答案:不可以关联查询
分库的原则: 有紧密关联关系的表应该在一个库里,相互没有关联关系的表可以分到不同的库里。

#客户表 rows:20万
CREATE TABLE customer(
id INT AUTO_INCREMENT,
NAME VARCHAR(200),
PRIMARY KEY(id)
);
#订单表 rows:600万
CREATE TABLE orders(
id INT AUTO_INCREMENT,
order_type INT,
customer_id INT,
amount DECIMAL(10,2),
PRIMARY KEY(id)
);
#订单详细表 rows:600万
CREATE TABLE orders_detail(
id INT AUTO_INCREMENT,
detail VARCHAR(2000),
order_id INT,
PRIMARY KEY(id)
);
#订单状态字典表 rows:20
CREATE TABLE dict_order_type(
id INT AUTO_INCREMENT,
order_type VARCHAR(200),
PRIMARY KEY(id)
);

以上四个表如何分库?客户表分在一个数据库,另外三张都需要关联查询,分在另外一个数据库。

4.2 实现分库

1、 修改 schema 配置文件

<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100" dataNode="dn1">
<table name="customer" dataNode="dn2" ></table>
</schema>
<dataNode name="dn1" dataHost="host1" database="orders" />
<dataNode name="dn2" dataHost="host2" database="orders" />
<dataHost name="host1" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1"
slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM1" url="192.168.140.128:3306" user="root"
password="123123">
</writeHost>
</dataHost>
<dataHost name="host2" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1"
slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM2" url="192.168.140.127:3306" user="root"
password="123123">
</writeHost>
</dataHost>
…
#如下图

在这里插入图片描述

2、 新增两个空白库

分库操作不是在原来的老数据库上进行操作,需要准备两台机器分别安装新的数据库

#在数据节点 dn1、 dn2 上分别创建数据库 orders
CREATE DATABASE orders;

3、 启动 Mycat

./mycat console

在这里插入图片描述
4、 访问 Mycat 进行分库

#访问 Mycat
mysql -umycat -p123456 -h 192.168.140.128 -P 8066
#切换到 TESTDB
#创建 4 张表
#查看表信息,可以看到成功分库

在这里插入图片描述

第五章 水平拆分——分表

相对于垂直拆分,水平拆分不是将表做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中 包含一部分数据。简单来说,我们可以将数据的水平切分理解为是按照数据行的切分,就是将表中的某些行切分 到一个数据库,而另外的某些行又切分到其他的数据库中,如图:
在这里插入图片描述

5.1 实现分表

1、 选择要拆分的表
MySQL 单表存储数据条数是有瓶颈的,单表达到 1000 万条数据就达到了瓶颈,会影响查询效率,需要进行水平拆分(分表) 进行优化。
例如:例子中的 orders、 orders_detail 都已经达到 600 万行数据,需要进行分表优化。
2、 分表字段
以 orders 表为例,可以根据不同自字段进行分表

编号分表字段效果
1id(主键、 或创建时间)查询订单注重时效,历史订单被查询的次数少,如此分片会造成一个节点访问多,一个访问少,不平均。
2customer_id(客户 id)根据客户 id 去分,两个节点访问平均,一个客户的所 有订单都在同一个节点

3、 修改配置文件 schema.xml

#为 orders 表设置数据节点为 dn1、 dn2, 并指定分片规则为 mod_rule(自定义的名字)
<table name="orders" dataNode="dn1,dn2" rule="mod_rule" ></table>
#如下图

在这里插入图片描述
4、 修改配置文件 rule.xml

#在 rule 配置文件里新增分片规则 mod_rule,并指定规则适用字段为 customer_id,
#还有选择分片算法 mod-long(对字段求模运算) , customer_id 对两个节点求模,根据结果分片
#配置算法 mod-long 参数 count 为 2,两个节点
<tableRule name="mod_rule">
<rule>
<columns>customer_id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule><function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<property name="count">2</property>
</function>
#如下图:

5、 在数据节点 dn2 上建 orders 表
6、 重启 Mycat,让配置生效
7、 访问 Mycat 实现分片

#在 mycat 里向 orders 表插入数据, INSERT 字段不能省略
INSERT INTO orders(id,order_type,customer_id,amount) VALUES (1,101,100,100100);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(2,101,100,100300);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(3,101,101,120000);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(4,101,101,103000);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(5,102,101,100400);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(6,102,100,100020);

#在mycat、 dn1、 dn2中查看orders表数据,分表成功
在这里插入图片描述

5.2 Mycat 的分片 “join”

rders 订单表已经进行分表操作了,和它关联的 orders_detail 订单详情表如何进行 join 查询。我们要对 orders_detail 也要进行分片操作。 Join 的原理如下图:
在这里插入图片描述
1、 ER 表
Mycat 借鉴了 NewSQL 领域的新秀 Foundation DB 的设计思路, Foundation DB 创新性的提出了 Table Group 的概念,其将子表的存储位置依赖于主表,并且物理上紧邻存放,因此彻底解决了JION 的效率和性能问 题,根据这一思路,提出了基于 E-R 关系的数据分片策略,子表的记录与所关联的父表记录存放在同一个数据分片上。

#修改 schema.xml 配置文件
…
<table name="orders" dataNode="dn1,dn2" rule="mod_rule" >
	<childTable name="orders_detail" primaryKey="id" joinKey="order_id" parentKey="id" />
</table>
#在dn2 创建 orders_detail 表
#重启 Mycat
#访问 Mycat 向 orders_detail 表插入数据
INSERT INTO orders_detail(id,detail,order_id) values(1,'detail1',1);
INSERT INTO orders_detail(id,detail,order_id) VALUES(2,'detail1',2);
INSERT INTO orders_detail(id,detail,order_id) VALUES(3,'detail1',3);
INSERT INTO orders_detail(id,detail,order_id) VALUES(4,'detail1',4);
INSERT INTO orders_detail(id,detail,order_id) VALUES(5,'detail1',5);
INSERT INTO orders_detail(id,detail,order_id) VALUES(6,'detail1',6);
#在mycat、 dn1、 dn2中运行两个表join语句
Select o.*,od.detail from orders o inner join orders_detail od on o.id=od.order_id;

2、 全局表
在分片的情况下,当业务表因为规模而进行分片以后,业务表与这些附属的字典表之间的关联,就成了比较 棘手的问题,考虑到字典表具有以下几个特性:
① 变动不频繁
② 数据量总体变化不大
③ 数据规模不大,很少有超过数十万条记录

鉴于此, Mycat 定义了一种特殊的表,称之为“全局表”,全局表具有以下特性:
① 全局表的插入、更新操作会实时在所有节点上执行,保持各个分片的数据一致性
② 全局表的查询操作,只从一个节点获取
③ 全局表可以跟任何一个表进行 JOIN 操作

将字典表或者符合字典表特性的一些表定义为全局表,则从另外一个方面,很好的解决了数据JOIN 的难题。 通过全局表+基于 E-R 关系的分片策略, Mycat 可以满足 80%以上的企业应用开发

#修改 schema.xml 配置文件
…
<table name="orders" dataNode="dn1,dn2" rule="mod_rule" >
<childTable name="orders_detail" primaryKey="id" joinKey="order_id" parentKey="id" />
</table>
<table name="dict_order_type" dataNode="dn1,dn2" type="global" ></table>
#在dn2 创建 dict_order_type 表
#重启 Mycat
#访问 Mycat 向 dict_order_type 表插入数据
INSERT INTO dict_order_type(id,order_type) VALUES(101,'type1');
INSERT INTO dict_order_type(id,order_type) VALUES(102,'type2');
#在Mycat、 dn1、 dn2中查询表数据

5.3 常用分片规则

1、 取模
此规则为对分片字段求摸运算。 也是水平分表最常用规则。以上 orders 表采用了此规则。
2、 分片枚举
通过在配置文件中配置可能的枚举 id,自己配置分片,本规则适用于特定的场景,比如有些业务需要按照省份或区县来做保存,而全国省份区县固定的,这类业务使用本条规则。

#(1) 修改schema.xml配置文件
<table name="orders_ware_info" dataNode="dn1,dn2" rule="sharding_by_intfile" ></table>
#(2) 修改rule.xml配置文件
<tableRule name="sharding_by_intfile">
<rule>
<columns>areacode</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule><function name="hash-int"
class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
<property name="type">1</property>
<property name="defaultNode">0</property>
</function>
# columns:分片字段, algorithm:分片函数
# mapFile: 标识配置文件名称, type: 0为int型、 非0为String,
#defaultNode: 默认节点:小于 0 表示不设置默认节点,大于等于 0 表示设置默认节点,
# 设置默认节点如果碰到不识别的枚举值,就让它路由到默认节点,如不设置不识别就报错
#(3) 修改partition-hash-int.txt配置文件
10000=0 
10010=1
#(4) 重启 Mycat
#(5) 访问Mycat创建表
#订单归属区域信息表
CREATE TABLE orders_ware_info
(
`id` INT AUTO_INCREMENT comment '编号',
`order_id` INT comment '订单编号',
`address` VARCHAR(200) comment '地址',
`areacode` VARCHAR(20) comment '区域编号',
PRIMARY KEY(id)
);
#(6) 插入数据
INSERT INTO orders_ware_info(id, order_id,address,areacode) VALUES (1,1,'北京','10000');
INSERT INTO orders_ware_info(id, order_id,address,areacode) VALUES (2,2,'天津','10010');
#(7) 查询Mycat、 dn1、 dn2可以看到数据分片效果
select * from orders_ware_info

3、 范围约定

此分片适用于,提前规划好分片字段某个范围属于哪个分片。

#(1) 修改schema.xml配置文件
<table name="payment_info" dataNode="dn1,dn2" rule="auto_sharding_long" ></table>
#(2) 修改rule.xml配置文件
<tableRule name="auto_sharding_long">
<rule>
<columns>order_id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule><function name="rang-long"
class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
<property name="defaultNode">0</property>
</function>
# columns:分片字段, algorithm:分片函数
# mapFile: 标识配置文件名称
#defaultNode: 默认节点:小于 0 表示不设置默认节点,大于等于 0 表示设置默认节点,
# 设置默认节点如果碰到不识别的枚举值,就让它路由到默认节点,如不设置不识别就
报错
#(3) 修改autopartition-long.txt配置文件
0-102=0
103-200=1
#(4) 重启 Mycat
#(5) 访问Mycat创建表
#支付信息表
CREATE TABLE payment_info
(
`id` INT AUTO_INCREMENT comment '编号',
`order_id` INT comment '订单编号',
`payment_status` INT comment '支付状态',
PRIMARY KEY(id)
);
#(6) 插入数据
INSERT INTO payment_info (id,order_id,payment_status) VALUES (1,101,0);
INSERT INTO payment_info (id,order_id,payment_status) VALUES (2,102,1);
INSERT INTO payment_info (id,order_id ,payment_status) VALUES (3,103,0);
INSERT INTO payment_info (id,order_id,payment_status) VALUES (4,104,1);
#(7) 查询Mycat、 dn1、 dn2可以看到数据分片效果

4、 按日期(天)分片

此规则为按天分片。 设定时间格式、范围

#(1) 修改schema.xml配置文件
<table name="login_info" dataNode="dn1,dn2" rule="sharding_by_date" ></table>
#(2) 修改rule.xml配置文件
<tableRule name="sharding_by_date">
<rule>
<columns>login_date</columns>
<algorithm>shardingByDate</algorithm>
</rule>
</tableRule><function name="shardingByDate" class="io.mycat.route.function.PartitionByDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2019-01-01</property>
<property name="sEndDate">2019-01-04</property>
<property name="sPartionDay">2</property>
</function>
# columns:分片字段, algorithm:分片函数
#dateFormat :日期格式
#sBeginDate :开始日期
#sEndDate:结束日期,则代表数据达到了这个日期的分片后循环从开始分片插入
#sPartionDay :分区天数,即默认从开始日期算起,分隔 2 天一个分区
#(3) 重启 Mycat
#(4) 访问Mycat创建表
#用户信息表
CREATE TABLE login_info
(
`id` INT AUTO_INCREMENT comment '编号',
`user_id` INT comment '用户编号',
`login_date` date comment '登录日期',
PRIMARY KEY(id)
);
#(6) 插入数据
INSERT INTO login_info(id,user_id,login_date) VALUES (1,101,'2019-01-01');
INSERT INTO login_info(id,user_id,login_date) VALUES (2,102,'2019-01-02');
INSERT INTO login_info(id,user_id,login_date) VALUES (3,103,'2019-01-03');
INSERT INTO login_info(id,user_id,login_date) VALUES (4,104,'2019-01-04');
INSERT INTO login_info(id,user_id,login_date) VALUES (5,103,'2019-01-05');
INSERT INTO login_info(id,user_id,login_date) VALUES (6,104,'2019-01-06');
#(7) 查询Mycat、 dn1、 dn2可以看到数据分片效果

5.4 全局序列

在实现分库分表的情况下,数据库自增主键已无法保证自增主键的全局唯一。为此, Mycat 提供了全局 sequence,并且提供了包含本地配置和数据库配置等多种实现方式

1、 本地文件
此方式 Mycat 将 sequence 配置到文件中,当使用到 sequence 中的配置后, Mycat 会更下classpath 中的 sequence_conf.properties 文件中 sequence 当前的值。
① 优点: 本地加载,读取速度较快
② 缺点: 抗风险能力差, Mycat 所在主机宕机后,无法读取本地文件。

2、 数据库方式(推荐)
利用数据库一个表 来进行计数累加。但是并不是每次生成序列都读写数据库,这样效率太低。Mycat 会预加载一部分号段到 Mycat 的内存中,这样大部分读写序列都是在内存中完成的。如果内存中的号段用完了 Mycat 会再向数据库要一次。
问:那如果 Mycat 崩溃了 ,那内存中的序列岂不是都没了?
是的。如果是这样,那么 Mycat 启动后会向数据库申请新的号段,原有号段会弃用。
也就是说如果 Mycat 重启,那么损失是当前的号段没用完的号码,但是不会因此出现主键重复

① 建库序列脚本

#在 dn1 上创建全局序列表
CREATE TABLE MYCAT_SEQUENCE (NAME VARCHAR(50) NOT NULL,current_value INT NOT
NULL,increment INT NOT NULL DEFAULT 100, PRIMARY KEY(NAME)) ENGINE=INNODB;

#创建全局序列所需函数
DELIMITER $$
CREATE FUNCTION mycat_seq_currval(seq_name VARCHAR(50)) RETURNS VARCHAR(64)
DETERMINISTIC
BEGIN
DECLARE retval VARCHAR(64);
SET retval="-999999999,null";
SELECT CONCAT(CAST(current_value AS CHAR),",",CAST(increment AS CHAR)) INTO retval FROM
MYCAT_SEQUENCE WHERE NAME = seq_name;
RETURN retval;
END $$
DELIMITER ;

DELIMITER $$
CREATE FUNCTION mycat_seq_setval(seq_name VARCHAR(50),VALUE INTEGER) RETURNS
VARCHAR(64)
DETERMINISTIC
BEGIN
UPDATE MYCAT_SEQUENCE
SET current_value = VALUE
WHERE NAME = seq_name;
RETURN mycat_seq_currval(seq_name);
END $$
DELIMITER ;

DELIMITER $$
CREATE FUNCTION mycat_seq_nextval(seq_name VARCHAR(50)) RETURNS VARCHAR(64)
DETERMINISTIC
BEGIN
UPDATE MYCAT_SEQUENCE
SET current_value = current_value + increment WHERE NAME = seq_name;
RETURN mycat_seq_currval(seq_name);
END $$
DELIMITER ;

#初始化序列表记录
INSERT INTO MYCAT_SEQUENCE(NAME,current_value,increment) VALUES ('ORDERS', 400000,
100);

在这里插入图片描述
② 修改 Mycat 配置

#修改sequence_db_conf.properties
vim sequence_db_conf.properties
#意思是 ORDERS这个序列在dn1这个节点上,具体dn1节点是哪台机子,请参考schema.xml

在这里插入图片描述

#修改server.xml
vim server.xml
#全局序列类型: 0-本地文件, 1-数据库方式, 2-时间戳方式。此处应该修改成1。

在这里插入图片描述
#重启Mycat
③ 验证全局序列

#登录 Mycat,插入数据
insert into orders(id,amount,customer_id,order_type) values(next value for
MYCATSEQ_ORDERS,1000,101,102);
#查询数据

在这里插入图片描述
#重启Mycat后,再次插入数据,再查询
在这里插入图片描述
3、 时间戳方式
全局序列ID= 64 位二进制 (42(毫秒)+5(机器 ID)+5(业务编码)+12(重复累加) 换算成十进制为 18 位数的long 类型,每毫秒可以并发 12 位二进制的累加。
① 优点: 配置简单
② 缺点: 18 位 ID 过长

4、 自主生成全局序列
可在 java 项目里自己生成全局序列,如下:
① 根据业务逻辑组合
② 可以利用 redis 的单线程原子性 incr 来生成序列,但,自主生成需要单独在工程中用 java 代码实现, 还是推荐使用 Mycat 自带全局序列。

第七章 Mycat 安全设置

7.1 权限配置

1、 user 标签权限控制
目前 Mycat 对于中间件的连接控制并没有做太复杂的控制,目前只做了中间件逻辑库级别的读写权限控制。是通过 server.xml 的 user 标签进行配置。

#server.xml配置文件user部分
<user name="mycat">
	<property name="password">123456</property>
	<property name="schemas">TESTDB</property>
</user>
<user name="user">
	<property name="password">user</property>
	<property name="schemas">TESTDB</property>
	<property name="readOnly">true</property>
</user>
#如下图

在这里插入图片描述
2、 privileges 标签权限控制
在 user 标签下的 privileges 标签可以对逻辑库(schema)、表(table)进行精细化的 DML 权限控制。

privileges 标签下的 check 属性,如为 true 开启权限检查,为 false 不开启,默认为 false。

由于 Mycat 一个用户的 schemas 属性可配置多个逻辑库(schema) ,所以 privileges 的下级节点 schema 节点同样可配置多个,对多库多表进行细粒度的 DML 权限控制。

#server.xml配置文件privileges部分
#配置orders表没有增删改查权限
<user name="mycat">
	<property name="password">123456</property>
	<property name="schemas">TESTDB</property>
	<!-- 表级 DML 权限设置 -->
	<privileges check="true">
		<schema name="TESTDB" dml="1111" >
			<table name="orders" dml="0000"></table>
			<!--<table name="tb02" dml="1111"></table>-->
		</schema>
	</privileges>
</user>


配置说明

DML 权限增加(insert)更新(update)查询(select)删除(select)
0000禁止禁止禁止禁止
0010禁止禁止可以禁止
1110可以禁止禁止禁止
1111可以可以可以可以

测试案例

#测试案例一
# 使用mycat用户, privileges配置orders表权限为禁止增删改查(dml="0000")
# 验证是否可以查询出数据, 验证是否可以写入数据

#1、 重启mycat, 用mycat用户登录,运行命令如下:
mysql -umycat -p123456 -h 192.168.140.128 -P8066

#2、切换到TESTDB数据库,查询orders表数据,如下:
use TESTDB
select * from orders;

#3、 禁止该用户查询数据,如下图

在这里插入图片描述

#4、执行插入数据sql,如下:
insert into orders(id,order_type,customer_id,amount) values(8,101,101,10000);
#5、 可看到运行结果, 禁止该用户插入数据, 如下图:

在这里插入图片描述

7.2 SQL 拦截

firewall 标签用来定义防火墙; firewall 下 whitehost 标签用来定义 IP 白名单 , blacklist 用来定义SQL 黑名单。

1、 白名单
可以通过设置白名单, 实现某主机某用户可以访问 Mycat,而其他主机用户禁止访问。

#设置白名单
#server.xml配置文件firewall标签
#配置只有192.168.140.128主机可以通过mycat用户访问
<firewall>
	<whitehost>
		<host host="192.168.140.128" user="mycat"/>
	</whitehost>
</firewall>


2、 黑名单
可以通过设置黑名单, 实现 Mycat 对具体 SQL 操作的拦截, 如增删改查等操作的拦截。

#设置黑名单
#server.xml配置文件firewall标签
#配置禁止mycat用户进行删除操作
<firewall>
	<whitehost>
		<host host="192.168.140.128" user="mycat"/>
	</whitehost>
	<blacklist check="true">
		<property name="deleteAllow">false</property>
	</blacklist>
</firewall>

可以设置的黑名单 SQL 拦截功能列表

配置项缺省值描述
selelctAllowtrue是否允许执行 SELECT 语句
deleteAllowtrue是否允许执行 DELETE 语句
updateAllowtrue是否允许执行 UPDATE 语句
insertAllowtrue是否允许执行 INSERT 语句
createTableAllowtrue是否允许创建表
setAllowtrue是否允许使用 SET 语法
alterTableAllowtrue是否允许执行 Alter Table 语句
dropTableAllowtrue是否允许修改表
commitAllowtrue是否允许执行 commit 操作
rollbackAllowtrue是否允许执行 roll back 操作

8.2 Mycat-web 配置使用
docker安装mycat-web性能监控工具

# 拉取镜像
docker pull registry.cn-hangzhou.aliyuncs.com/zhengqing/mycat-web
# 运行
docker run --name mycat-web -d -p 8082:8082 --restart=always registry.cn-hangzhou.aliyuncs.com/zhengqing/mycat-web

三、mycat-web使用
浏览器访问你的ip:8082/mycat/ ex: www.zhengqingya.com:8082/mycat/
在这里插入图片描述

在这里插入图片描述

代码示例

server

<?xml version="1.0" encoding="UTF-8"?>
<!-- - - Licensed under the Apache License, Version 2.0 (the "License"); 
	- you may not use this file except in compliance with the License. - You 
	may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 
	- - Unless required by applicable law or agreed to in writing, software - 
	distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT 
	WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the 
	License for the specific language governing permissions and - limitations 
	under the License. -->
<!DOCTYPE mycat:server SYSTEM "server.dtd">
<mycat:server xmlns:mycat="http://io.mycat/">
	<system>
	<property name="useSqlStat">0</property>  <!-- 1为开启实时统计、0为关闭 -->
	<property name="useGlobleTableCheck">0</property>  <!-- 1为开启全加班一致性检测、0为关闭 -->

		<property name="sequnceHandlerType">2</property>
      <!--  <property name="useCompression">1</property>--> <!--1为开启mysql压缩协议-->
        <!--  <property name="fakeMySQLVersion">5.6.20</property>--> <!--设置模拟的MySQL版本号-->
	<!-- <property name="processorBufferChunk">40960</property> -->
	<!-- 
	<property name="processors">1</property> 
	<property name="processorExecutor">32</property> 
	 -->
		<!--默认为type 0: DirectByteBufferPool | type 1 ByteBufferArena-->
		<property name="processorBufferPoolType">0</property>
		<!--默认是65535 64K 用于sql解析时最大文本长度 -->
		<!--<property name="maxStringLiteralLength">65535</property>-->
		<!--<property name="sequnceHandlerType">0</property>-->
		<!--<property name="backSocketNoDelay">1</property>-->
		<!--<property name="frontSocketNoDelay">1</property>-->
		<!--<property name="processorExecutor">16</property>-->
		<!--
			<property name="serverPort">8066</property> <property name="managerPort">9066</property> 
			<property name="idleTimeout">300000</property> <property name="bindIp">0.0.0.0</property> 
			<property name="frontWriteQueueSize">4096</property> <property name="processors">32</property> -->
		<!--分布式事务开关,0为不过滤分布式事务,1为过滤分布式事务(如果分布式事务内只涉及全局表,则不过滤),2为不过滤分布式事务,但是记录分布式事务日志-->
		<property name="handleDistributedTransactions">0</property>
		
			<!--
			off heap for merge/order/group/limit      1开启   0关闭
		-->
		<property name="useOffHeapForMerge">1</property>

		<!--
			单位为m
		-->
		<property name="memoryPageSize">1m</property>

		<!--
			单位为k
		-->
		<property name="spillsFileBufferSize">1k</property>

		<property name="useStreamOutput">0</property>

		<!--
			单位为m
		-->
		<property name="systemReserveMemorySize">384m</property>


		<!--是否采用zookeeper协调切换  -->
		<property name="useZKSwitch">true</property>


	</system>
	
	<!-- 全局SQL防火墙设置 -->
	<!-- 
	<firewall> 
	   <whitehost>
	      <host host="127.0.0.1" user="mycat"/>
	      <host host="127.0.0.2" user="mycat"/>
	   </whitehost>
       <blacklist check="false">
       </blacklist>
	</firewall>
	-->
	
	<user name="root">
		<property name="password">123456</property>
		<property name="schemas">TESTDB,TESTDB2</property>
		
		<!-- 表级 DML 权限设置 -->
		<!-- 		
		<privileges check="false">
			<schema name="TESTDB" dml="0110" >
				<table name="tb01" dml="0000"></table>
				<table name="tb02" dml="1111"></table>
			</schema>
		</privileges>		
		 -->
	</user>

	<user name="user">
		<property name="password">user</property>
		<property name="schemas">TESTDB,TESTDB2</property>
		<!--是否只读-->
		<property name="readOnly">true</property>
	</user>

</mycat:server>

schema

<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
    
    
    <!--读写分离-->
	<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100"  dataNode="dn1">
	</schema>
	
	 <!--分库-->
	 <!--分表-->
    <schema name="TESTDB2" checkSQLschema="false" sqlMaxLimit="100">
        <table name="customer" dataNode="dn2" ></table>
        <table name="orders" dataNode="dn2,dn3" rule="mod_rule" >
            <!--er表-->
            <childTable name="orders_detail" primaryKey="id" joinKey="order_id" parentKey="id" />
        </table>
		<!--<table name="orders_detail" dataNode="dn3"  />-->
		<!-- 全局表-->
		<table name="dict_order_type" dataNode="dn3,dn2" type="global" />
		<!--分片枚举-->
		<table name="orders_ware_info" dataNode="dn2,dn3" rule="sharding_by_intfile" ></table>
		<!--范围约定-->
		<table name="payment_info" dataNode="dn2,dn3"  ></table>
		<!--按日期(天)分片-->
		<table name="login_info" dataNode="dn2,dn3" rule="sharding_by_date" ></table>
		<!--<table name="dictionary" primaryKey="id" autoIncrement="true" dataNode="dn1,dn2"  rule="mod-long" />-->
	</schema>
	
	<dataNode name="dn1" dataHost="host1" database="mycat_test" />
	<dataNode name="dn2" dataHost="host2" database="orders" />
	<dataNode name="dn3" dataHost="host3" database="orders" />
	
	
	<dataHost name="host1" maxCon="1000" minCon="10" balance="2"
			  writeType="0" dbType="mysql" dbDriver="native" switchType="1"  slaveThreshold="100">
		<heartbeat>select user()</heartbeat>
		<!-- can have multi write hosts -->
		<writeHost host="hostM1" url="106.55.168.234:3306" user="root"
				   password="zk2000208.">
			<!-- can have multi read hosts -->
			<readHost host="hostS2" url="118.31.107.177:3306" user="root"
			password="zk2000208." />
		</writeHost>
	</dataHost>
	

	

	<dataHost name="host2" maxCon="1000" minCon="10" balance="0"
			  writeType="0" dbType="mysql" dbDriver="native" switchType="1"  slaveThreshold="100">
		<heartbeat>select user()</heartbeat>
		<!-- can have multi write hosts -->
			<writeHost host="hostM1" url="106.55.168.234:3306" user="root"
				   password="zk2000208.">
		    </writeHost>
	</dataHost>
	<dataHost name="host3" maxCon="1000" minCon="10" balance="0"
			  writeType="0" dbType="mysql" dbDriver="native" switchType="1"  slaveThreshold="100">
		<heartbeat>select user()</heartbeat>
		<!-- can have multi write hosts -->
			<writeHost host="hostM2" url="118.31.107.177:3306" user="root"
				   password="zk2000208.">
		    </writeHost>
	</dataHost>
	

</mycat:schema>

rule

<?xml version="1.0" encoding="UTF-8"?>
<!-- - - Licensed under the Apache License, Version 2.0 (the "License"); 
	- you may not use this file except in compliance with the License. - You 
	may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 
	- - Unless required by applicable law or agreed to in writing, software - 
	distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT 
	WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the 
	License for the specific language governing permissions and - limitations 
	under the License. -->
<!DOCTYPE mycat:rule SYSTEM "rule.dtd">
<mycat:rule xmlns:mycat="http://io.mycat/">
    
    <!--取模-->
    <tableRule name="mod_rule">
        <rule>
            <columns>customer_id</columns>
             <algorithm>mod-long</algorithm>
        </rule>
    </tableRule>
    <!--分片枚举-->
	<tableRule name="sharding_by_intfile">
		<rule>
			<columns>areacode</columns>
			<algorithm>hash-int</algorithm>
		</rule>
	</tableRule>
	 <!--范围约定-->
    <tableRule name="auto_sharding_long">
        <rule>
            <columns>order_id</columns>
            <algorithm>rang-long</algorithm>
        </rule>
    </tableRule>
    	<!--按日期(天)分片-->
    <tableRule name="sharding_by_date">
        <rule>
        <columns>login_date</columns>
        <algorithm>shardingByDate</algorithm>
        </rule>
    </tableRule>
    
	<tableRule name="rule1">
		<rule>
			<columns>id</columns>
			<algorithm>func1</algorithm>
		</rule>
	</tableRule>

	<tableRule name="rule2">
		<rule>
			<columns>user_id</columns>
			<algorithm>func1</algorithm>
		</rule>
	</tableRule>

	<tableRule name="mod-long">
		<rule>
			<columns>id</columns>
			<algorithm>mod-long</algorithm>
		</rule>
	</tableRule>
	<tableRule name="sharding-by-murmur">
		<rule>
			<columns>id</columns>
			<algorithm>murmur</algorithm>
		</rule>
	</tableRule>
	<tableRule name="crc32slot">
		<rule>
			<columns>id</columns>
			<algorithm>crc32slot</algorithm>
		</rule>
	</tableRule>
	<tableRule name="sharding-by-month">
		<rule>
			<columns>create_time</columns>
			<algorithm>partbymonth</algorithm>
		</rule>
	</tableRule>
	<tableRule name="latest-month-calldate">
		<rule>
			<columns>calldate</columns>
			<algorithm>latestMonth</algorithm>
		</rule>
	</tableRule>
	
	<tableRule name="auto-sharding-rang-mod">
		<rule>
			<columns>id</columns>
			<algorithm>rang-mod</algorithm>
		</rule>
	</tableRule>
	
	<tableRule name="jch">
		<rule>
			<columns>id</columns>
			<algorithm>jump-consistent-hash</algorithm>
		</rule>
	</tableRule>

	<function name="murmur"
		class="io.mycat.route.function.PartitionByMurmurHash">
		<property name="seed">0</property><!-- 默认是0 -->
		<property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片 -->
		<property name="virtualBucketTimes">160</property><!-- 一个实际的数据库节点被映射为这么多虚拟节点,默认是160倍,也就是虚拟节点数是物理节点数的160倍 -->
		<!-- <property name="weightMapFile">weightMapFile</property> 节点的权重,没有指定权重的节点默认是1。以properties文件的格式填写,以从0开始到count-1的整数值也就是节点索引为key,以节点权重值为值。所有权重值必须是正整数,否则以1代替 -->
		<!-- <property name="bucketMapPath">/etc/mycat/bucketMapPath</property> 
			用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的murmur hash值与物理节点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 -->
	</function>

	<function name="crc32slot"
			  class="io.mycat.route.function.PartitionByCRC32PreSlot">
		<property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片 -->
	</function>
	<function name="hash-int"
		class="io.mycat.route.function.PartitionByFileMap">
		<property name="mapFile">partition-hash-int.txt</property>
		<property name="type">1</property>
        <property name="defaultNode">0</property>
	</function>
	
	<function name="rang-long"
		class="io.mycat.route.function.AutoPartitionByLong">
		<property name="mapFile">autopartition-long.txt</property>
        <property name="defaultNode">0</property>
	</function>
	
	<function name="shardingByDate" class="io.mycat.route.function.PartitionByDate">
        <property name="dateFormat">yyyy-MM-dd</property>
        <property name="sBeginDate">2019-01-01</property>
        <property name="sEndDate">2019-01-04</property>
        <property name="sPartionDay">2</property>
    </function>
    
	<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
		<!-- how many data nodes -->
		<!--节点数-->
		<property name="count">2</property>
	</function>

	<function name="func1" class="io.mycat.route.function.PartitionByLong">
		<property name="partitionCount">8</property>
		<property name="partitionLength">128</property>
	</function>
	<function name="latestMonth"
		class="io.mycat.route.function.LatestMonthPartion">
		<property name="splitOneDay">24</property>
	</function>
	<function name="partbymonth"
		class="io.mycat.route.function.PartitionByMonth">
		<property name="dateFormat">yyyy-MM-dd</property>
		<property name="sBeginDate">2015-01-01</property>
	</function>
	
	<function name="rang-mod" class="io.mycat.route.function.PartitionByRangeMod">
        	<property name="mapFile">partition-range-mod.txt</property>
	</function>
	
	<function name="jump-consistent-hash" class="io.mycat.route.function.PartitionByJumpConsistentHash">
		<property name="totalBuckets">3</property>
	</function>
</mycat:rule>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值