队列和 BFS:
广度优先搜索(BFS)的一个常见应用是找出从根结点到目标结点的最短路径。
示例
这里我们提供一个示例来说明如何使用 BFS 来找出根结点 A 和目标结点 G 之间的最短路径。

洞悉
观看上面的动画后,让我们回答以下问题:
1. 结点的处理顺序是什么?
在第一轮中,我们处理根结点。在第二轮中,我们处理根结点旁边的结点;在第三轮中,我们处理距根结点两步的结点;等等等等。
与树的层序遍历类似,越是接近根结点的结点将越早地遍历。
如果在第 k 轮中将结点 X 添加到队列中,则根结点与 X 之间的最短路径的长度恰好是 k。也就是说,第一次找到目标结点时,你已经处于最短路径中。
2. 队列的入队和出队顺序是什么?
如上面的动画所示,我们首先将根结点排入队列。然后在每一轮中,我们逐个处理已经在队列中的结点,并将所有邻居添加到队列中。值得注意的是,新添加的节点不会立即遍历,而是在下一轮中处理。
结点的处理顺序与它们添加到队列的顺序是完全相同的顺序,即先进先出(FIFO)。这就是我们在 BFS 中使用队列的原因。
栈和 DFS:
与 BFS 类似,深度优先搜索(DFS)也可用于查找从根结点到目标结点的路径。在本文中,我们提

本文探讨了队列和 BFS 在寻找树中从根结点到目标结点的最短路径,以及栈和 DFS 如何处理路径搜索。在 BFS 中,使用队列实现先进先出,确保找到最短路径。而在 DFS 中,虽然可能快速找到一条路径,但不一定是最短的。
最低0.47元/天 解锁文章
887

被折叠的 条评论
为什么被折叠?



