题目链接
题目描述
解题思路
二分答案加前缀和
题目要求将一个长度为N的正整数数列分成M段,并要求每段连续,且每段和的最大值最小。我们可以使用二分答案算法和前缀和数组来解决此问题。
首先,我们使用前缀和数组来记录原始序列的前缀和。这样可以在O(1)的时间复杂度内得到任意一个子序列的和。
然后,我们设置二分搜索的范围,将最小可能的最大值设置为子序列中的最大元素,将最大可能的最大值设置为整个序列的和。
接下来,我们使用二分搜索的方法来确定最小可能的最大值。在每一次二分搜索中,我们计算出中间值,并使用check函数来判断以该中间值作为最大和的条件下是否可以将原始序列分成M段。如果可以,将搜索的右边界缩小到mid,否则将搜索的左边界增大到mid+1。最终,当搜索的左边界等于右边界时,二分搜索结束。
在check函数中,我们遍历前缀和数组,并维护一个变量cnt来计算分段的数量。如果当前元素与前一个分段的和大于x,则将分段数量加一,并更新前一个分段的结束位置为当前位置的前一个位置。如果分段数量超过了M-1,则返回false;否则返回true。
最后,输出二分搜索结束后得到的最小可能的最大和,即为题目要求的结果。
以上是使用二分答案算法和前缀和数组解决该问题的思路。这种方法的时间复杂度为O(NlogS),其中N是序列长度,S是序列的和。
代码实现
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5+10;
int a[N],s[N],n,m;
bool check(int x)
{
int cnt=0,f=0;
for(int i=1;i<=n;i++)
{
if(s[i]-s[f]>x){
cnt++;
f=i-1;
}
}
if(cnt>m-1) return false;
else return true;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>m;
int l=0;
for(int i=1;i<=n;i++) {
cin>>a[i];
s[i]=s[i-1]+a[i];
l=max(l,a[i]);
}
int r=s[n];
while(l<r)
{
int mid=l+r>>1;
if(check(mid)) r=mid;
else l=mid+1;
}
cout<<l<<endl;
return 0;
}
总结
掌握二分答案和前缀和算法