假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:示例 2:
解释方法摘自leecode
方法一:暴力法
算法
在暴力法中,我们将会把所有可能爬的阶数进行组合,也就是 1 和 2 。而在每一步中我们都会继续调用 climbStairsclimbStairs 这个函数模拟爬 1 阶和 2 阶的情形,并返回两个函数的返回值之和。
climbStairs(i,n) = climbStairs(i + 1, n) + climbStairs(i + 2, n)
climbStairs(i,n)=climbStairs(i+1,n)+climbStairs(i+2,n)
其中 ii定义了当前阶数,而 nn定义了目标阶数。
public class Solution {
public int climbStairs(int n) {
climb_Stairs(0, n);
}
public int climb_Stairs(int i, int n) {
if (i > n) {
return 0;
}
if (i == n) {
return 1;
}
return climb_Stairs(i + 1, n) + climb_Stairs(i + 2, n);
}
}
复杂度分析
时间复杂度:O(2^n)
树形递归的大小为 2^n
在 n=5 时的递归树将是这样的:
空间复杂度:O(n)O(n)。递归树的深度可以达到 nn 。
方法 2:记忆化递归
算法
在上一种方法中,我们计算每一步的结果时出现了冗余。另一种思路是,我们可以把每一步的结果存储在 memomemo 数组之中,每当函数再次被调用,我们就直接从 memomemo 数组返回结果。
在 memomemo 数组的帮助下,我们得到了一个修复的递归树,其大小减少到 n。
class Solution {
public int climbStairs(int n) {
int [] nums = new int[n+1];
return climb_Stairs(0,n,nums);
}
public int climb_Stairs(int i , int n,int nums[]) {
if(i > n) {
return 0;
}
if( i == n) {
return 1 ;
}
if(nums[i] !=0){
return nums[i];
}
nums[i] = climb_Stairs(i+1,n,nums)+ climb_Stairs(i+2,n,nums);
return nums[i];
}
}
复杂度分析
时间复杂度:O(n)O(n) 。树形递归的大小可以达到 nn 。
空间复杂度:O(n)O(n) 。递归树的深度可以达到 nn 。
方法 3:动态规划
算法
不难发现,这个问题可以被分解为一些包含最优子结构的子问题,即它的最优解可以从其子问题的最优解来有效地构建,我们可以使用动态规划来解决这一问题。
第 ii阶可以由以下两种方法得到:
在第 (i-1)(阶后向上爬一阶。
在第 (i-2) 阶后向上爬 2阶。
所以到达第 ii 阶的方法总数就是到第 (i-1)阶和第 (i-2)阶的方法数之和。
令 dp[i] 表示能到达第 ii 阶的方法总数:
dp[i]=dp[i-1]+dp[i-2]
示例:
public int climbStairs(int n) {
if(n == 1) {
return 1;
}
int [] num = new int [n+1];
num[1]=1;
num[2]=2;
for(int i = 3; i <= n; i++) {
num[i] = num[i-1] + num[i-2];
}
return num[n];
}
方法 4: 斐波那契数
算法
在上述方法中,我们使用 dpdp 数组,其中 dp[i]=dp[i-1]+dp[i-2]。可以很容易通过分析得出 dp[i] 其实就是第 i 个斐波那契数。
Fib(n)=Fib(n-1)+Fib(n-2)
现在我们必须找出以 1 和 2 作为第一项和第二项的斐波那契数列中的第n 个数,也就是说 Fib(1)=1且 Fib(2)=2。
public int climbStairs(int n) {
if(n == 1) {
return 1;
}
int num1=1;
int num2=2;
for(int i = 3; i <= n; i++) {
int temp = num1;
num1 = num2;
num2 = num1 +temp;
}
return num2;
}