爬楼梯 --java记录

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:在这里插入图片描述示例 2:在这里插入图片描述
解释方法摘自leecode

方法一:暴力法

算法

在暴力法中,我们将会把所有可能爬的阶数进行组合,也就是 1 和 2 。而在每一步中我们都会继续调用 climbStairsclimbStairs 这个函数模拟爬 1 阶和 2 阶的情形,并返回两个函数的返回值之和。

climbStairs(i,n) = climbStairs(i + 1, n) + climbStairs(i + 2, n)
climbStairs(i,n)=climbStairs(i+1,n)+climbStairs(i+2,n)

其中 ii定义了当前阶数,而 nn定义了目标阶数。

public class Solution {
    public int climbStairs(int n) {
        climb_Stairs(0, n);
    }
    public int climb_Stairs(int i, int n) {
        if (i > n) {
            return 0;
        }
        if (i == n) {
            return 1;
        }
        return climb_Stairs(i + 1, n) + climb_Stairs(i + 2, n);
    }
}

复杂度分析

时间复杂度:O(2^n)
树形递归的大小为 2^n
在 n=5 时的递归树将是这样的:在这里插入图片描述
空间复杂度:O(n)O(n)。递归树的深度可以达到 nn 。

方法 2:记忆化递归

算法

在上一种方法中,我们计算每一步的结果时出现了冗余。另一种思路是,我们可以把每一步的结果存储在 memomemo 数组之中,每当函数再次被调用,我们就直接从 memomemo 数组返回结果。

在 memomemo 数组的帮助下,我们得到了一个修复的递归树,其大小减少到 n。

class Solution {
   
    public int climbStairs(int n) {
         int [] nums = new int[n+1];
		 return climb_Stairs(0,n,nums);
		 
	}
	public int climb_Stairs(int i , int n,int nums[]) {
		if(i > n) {
			return 0;
		}
		if( i == n) {
			return 1 ;
		}
        if(nums[i] !=0){
            return nums[i];
        }
        nums[i] = climb_Stairs(i+1,n,nums)+ climb_Stairs(i+2,n,nums);
		return nums[i];
	}
}

复杂度分析

时间复杂度:O(n)O(n) 。树形递归的大小可以达到 nn 。

空间复杂度:O(n)O(n) 。递归树的深度可以达到 nn 。

方法 3:动态规划

算法

不难发现,这个问题可以被分解为一些包含最优子结构的子问题,即它的最优解可以从其子问题的最优解来有效地构建,我们可以使用动态规划来解决这一问题。

第 ii阶可以由以下两种方法得到:

在第 (i-1)(阶后向上爬一阶。

在第 (i-2) 阶后向上爬 2阶。

所以到达第 ii 阶的方法总数就是到第 (i-1)阶和第 (i-2)阶的方法数之和。

令 dp[i] 表示能到达第 ii 阶的方法总数:

dp[i]=dp[i-1]+dp[i-2]

示例:

	public int climbStairs(int n) {
		 if(n == 1) {
			 return 1;
		 }
		 int [] num = new int [n+1];
		 num[1]=1;
		 num[2]=2;
		 for(int i = 3; i <= n; i++) {
			 num[i] = num[i-1] + num[i-2];
		 }
		 return num[n];
		 
	}

方法 4: 斐波那契数

算法

在上述方法中,我们使用 dpdp 数组,其中 dp[i]=dp[i-1]+dp[i-2]。可以很容易通过分析得出 dp[i] 其实就是第 i 个斐波那契数。

Fib(n)=Fib(n-1)+Fib(n-2)

现在我们必须找出以 1 和 2 作为第一项和第二项的斐波那契数列中的第n 个数,也就是说 Fib(1)=1且 Fib(2)=2。

public int climbStairs(int n) {
		 if(n == 1) {
			 return 1;
		 }
	 
		 int num1=1;
		 int num2=2;
		 for(int i = 3; i <= n; i++) {
			 int temp = num1;
			 num1 = num2;
			 num2 = num1 +temp;
		 }
		 return num2;
		 
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值