数据挖掘——数据规范化的Min-Max 规范化 和 Z-score规范化;
两种常见的数据规范化方法 - Min-Max 规范化和 Z-score 规范化 - 在不同情况下具有不同的适用性。
Min-Max 规范化:
适用场景:
- 当数据的分布范围已知,并且需要将数据映射到一个固定的范围内时,通常选择 Min-Max 规范化。
- 适用于大多数机器学习算法,特别是对输入特征的范围敏感的算法,如神经网络和支持向量机(SVM)。
举例:
假设你有一个特征集合,其中包含身高、体重和年龄。你希望将这些特征缩放到[0, 1]的范围内。你可以使用 Min-Max 规范化来实现这一目标,确保所有特征的值都在0到1之间。
from sklearn.preprocessing import MinMaxScaler
data