数据挖掘——数据规范化的两种方法的比较

本文介绍了数据挖掘中常用的两种数据规范化方法:Min-Max规范化,适用于数据范围已知且无异常值的机器学习算法;Z-score规范化,适用于非正态分布或有异常值的数据,如聚类和PCA。通过Pythonsklearn库展示了这两种方法的实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据挖掘——数据规范化的Min-Max 规范化 和 Z-score规范化;



两种常见的数据规范化方法 - Min-Max 规范化和 Z-score 规范化 - 在不同情况下具有不同的适用性。

Min-Max 规范化:

适用场景

  • 当数据的分布范围已知,并且需要将数据映射到一个固定的范围内时,通常选择 Min-Max 规范化。
  • 适用于大多数机器学习算法,特别是对输入特征的范围敏感的算法,如神经网络和支持向量机(SVM)。
    1. **Min-Max规范化**(也称为离差标准化)将数据线性地转换到[0, 1]范围内。转换公式如下:

举例
假设你有一个特征集合,其中包含身高、体重和年龄。你希望将这些特征缩放到[0, 1]的范围内。你可以使用 Min-Max 规范化来实现这一目标,确保所有特征的值都在0到1之间。

from sklearn.preprocessing import MinMaxScaler

data 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值