Depix:还原马赛克工具的试用及总结

背景

一周前发现git上有个叫Depix的项目非常火,可以用来去除马赛克。
好奇之下准备下来试用一下这个工具
参考:

  1. https://github.com/beurtschipper/Depix
  2. 算法说明:https://www.linkedin.com/pulse/recovering-passwords-from-pixelized-screenshots-sipke-mellema
  3. De Bruijn序列:https://damip.net/article-de-bruijn-sequence

说明【翻译】

Depix适用于使用线性框过滤器(linear box filter)创建的像素化(马赛克)图像
使用方法:

  1. 从屏幕快照中将像素化的块切出为单个矩形。
  2. 在具有相同字体设置(文本大小,字体,颜色,hsl)的编辑器中,粘贴带有预期字符的De Bruijn序列。【见参考3】
  3. 制作序列的屏幕截图。如果可能,请使用与创建像素化图像相同的屏幕截图工具。
  4. 运行 python depix.py -p [pixelated rectangle image] -s [search sequence image] -o output.png

算法【翻译】

Depix使用的算法利用了线性盒式滤波器分别处理每个块的事实。对于每个块,它将对搜索图像(search image)中的所有块进行像素化以检查直接匹配。
对于大多数像素化图像,Depix设法找到单匹配结果。假设这些是正确的。然后,将周围的多匹配块的匹配进行比较,以在几何上与像素化图像中的距离相同的距离进行比较。匹配也被视为正确。重复此过程几次。
正确的块不再具有几何匹配之后,它将直接输出所有正确的块。对于多匹配块,它输出所有匹配的平均值。


说的简单一点
首先我们要创建一份预期字符的De Bruijn序列图像(search image)
比如我们知道打了马赛克的字符可能出现abc三种字符 那么他的De Bruijn序列为

aabacbbcca

这个序列包含了所有长度为2的字符组合可能性
而对于线性框滤镜算法,它采用一个像素框,然后用该框中所有像素的平均值覆盖像素。
那么将相同的值进行像素化将始终导致相同的像素化块。
这样一来我们就可以在序列图像中进行像素化 将得到的像素化结果与马赛克图像比较
通过穷举来得到最近似的结果

复现结果

python depix.py -p [pixelated rectangle image] -s [search sequence image] -o output.png

作者提供的序列图像(search image)
在这里插入图片描述
这个图像中包含了数字、英文字符、标点符号等各种两两出现的可能性 用于搜索匹配
下面是跑了作者测试用例的结果

  1. 测试1
    马赛克图像
    在这里插入图片描述
    还原图像
    在这里插入图片描述
  2. 测试2
    马赛克图像
    在这里插入图片描述
    还原图像
    在这里插入图片描述
  3. 测试3
    马赛克图像
    在这里插入图片描述
    还原图像
    在这里插入图片描述

对于作者提供的这三个例子,我们可以发现还原的结果还是不错的

使用自己的图像

这里我创建了一份序列图像(search image) [字符a-z]
在这里插入图片描述
并且在同样的编辑器(记事本)内写了一串字符(eggbed)
在这里插入图片描述
像素化
在这里插入图片描述
还原
在这里插入图片描述
额。。。显然对于自己的序列图像 实验失败了
原因猜测:
有可能是因为在像素化时使用的并非是作者要求的线性滤波器[我只是用了美图秀秀的马赛克]
从而导致了无法匹配
之后有空再试一下吧~~

总结

在刚开始看到这个工具时 感觉很厉害竟然能够还原马赛克图像
看了一遍之后才发现 对于实现这个功能 限制条件还是很多的
尤其是你需要知道马赛克原始字符会有哪些可能
并且你的序列图像需要与马赛克图像原本的字符拥有相同字体设置(文本大小,字体,颜色,hsl)

总之 对于随手打了马赛克后的一串文字 就想用这个工具来去掉马赛克 这是不现实的有困难的 [话不能说死]
而作者在说明之中也是说的很清楚这个工具的适用范围
更不要说是打了马赛克的图片了。
以上~

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页