- 博客(409)
- 资源 (1)
- 收藏
- 关注
原创 【Torch】nn.Conv1d、nn.Conv2d、nn.Conv3d算法详解
输入张量形状:输出张量形状: 表示向下取整当 、 且想让 时,令且 应为奇数。1.3 构造函数入参详解参数类型说明int输入通道数,必须与输入张量的第二维度匹配。int输出通道数,即卷积核数量,也决定了输出张量的通道数。int 或 1-tuple卷积核大小。单个整数表示每次跨越 个位置;也可写成 。int 或 1-tuple步幅:卷积核每次滑动的长度;默认为 1。int 或 1-tuple边界补零数;默认为 0。可用
2025-04-28 16:07:48
3025
原创 【计算机视觉】图像基本操作
一幅尺寸为M·N的图像可以用矩阵表示,每个矩阵元素代表一个像素,元素的值代表这个位置图像的亮度;其中,彩色图像使用3维矩阵M·N·3表示;对于图像显示来说,一般使用无符号8位整数来表示图像亮度,取值范围[0,255]图像数据按照自左向右、自上向下的顺序存储在计算机内存中,坐标体系中的零点坐标为图片的左上角,X轴为图像矩形的上面那条水平线;Y轴为图像矩形左边的那条垂直线。在OpenCV中,RGB彩色图像的通道顺序为BGR。
2024-11-28 09:25:54
2841
1
原创 最简单的pyinstaller打包exe方式
当存在多个文件时,需要指定好程序入口文件,使用pyinstall -D后,生成spec文件,修改spec文件,再使用pyinstaller -F打包。以下是spec配置文件,还可以直接按照文件内容提示填入所需文件名、打包名称等,从而更为简单的使用pyinstaller XXX.spec完成打包。此种方法最为直接简单,先生成spec配置文件,然后修改文件后,直接使用pyinstaller命令打包。单个文件内容,直接使用pyinstaller命令打包,打包后自动生成exe运行文件使用。
2024-10-28 09:27:16
2866
原创 使用单向LSTM进行股价预测
这个小项目是使用LSTM进行股价预测,使用数据是000001.SZ 平安银行自2014年开始的每日基础数据数据列包括【‘股票代码’, ‘交易日期’, ‘开盘价’, ‘最高价’, ‘最低价’, ‘收盘价’, ‘昨收价’, ‘涨跌额’,‘涨跌幅’, '成交量 ', ‘成交额’】演示代码主要使用前N天的基础数据预测下一天的收盘价,当然实际的工作中,不会去预测收盘价这种无意义的target,但在这里纯粹为了演示。
2024-10-17 09:33:39
1288
6
原创 阶次分析MatLab实现(附完整代码)
加载一个包含振动和转速信号的MAT文件。:采样频率设定为200,000 Hz。:从信号的第7个点开始,截取10秒的振动信号。:同样截取10秒的转速信号。:计算出对应的时间向量。
2024-10-16 10:08:23
3416
10
原创 LangGraph--同步和异步流实现
特性invoke()(同步)astream()(异步流)执行方式阻塞同步异步迭代(逐步返回)返回结果最终状态一次性返回节点输出逐步返回适用场景快速流程,节点少,无长耗时操作长流程、多节点、耗时操作(API、RAG、LLM)用户体验等待所有节点完成才有结果可实时看到中间执行状态前端显示一次性渲染可流式渲染(SSE、WebSocket)
2026-01-30 10:37:08
853
原创 LangGraph--CompiledStateGraph
我按照使用频率和逻辑把所有方法分成五类。类别方法用途执行完整执行一次流式边执行边输出事件更细粒度事件工具list_tools查看工具状态get_state获取当前状态。
2026-01-29 16:30:23
636
原创 LangGraph--StateGraph
方法用途示例add_node添加节点add_edge添加顺序边条件跳转if A → B 或 C快速构建链式流程compile图编译为可执行图。
2026-01-29 16:29:36
600
原创 【信创】华为昇腾NLP算法训练
目标:在国产信创硬件上训练长文本分类模型,并部署 API 提供推理服务任务类型:多类别/二分类 NLP 问题输入数据:长文本(如 2000+ token)输出:文本类别预测硬件环境鲲鹏 ARM64 CPU昆仑信创操作系统(如 openEuler / 麒麟)软件环境。
2026-01-27 16:02:03
410
原创 【信创】华为昇腾大模型部署
项目推荐方案说明模型训练框架MindSpore(昇腾原生)微调阶段效率高模型部署格式原生支持昇腾推理多模型调用XInference 动态注册切换快速在Base与Finetune模型间切换性能优化INT8量化 + 双卡并发 + 异步推理满足信创硬件约束兼容性支持PyTorch、MindSpore、ONNX统一部署适配灵活。
2026-01-27 16:01:20
1198
原创 LangGraph--Graph API
模块功能State管理图的共享数据,支持多 schema 和 reducerNode执行逻辑,支持状态更新、Command、缓存、runtime contextEdge控制流,可固定、条件、动态或入口Messages用于存储聊天记录和其他序列化消息支持 Map-Reduce 或动态控制流Runtime提供节点执行上下文,不属于状态超步控制与调试信息检查图结构,准备执行,支持缓存动态修改图结构与状态,图形化展示。
2026-01-23 09:20:32
591
原创 【信创】华为昇腾大模型训练
模块技术选型国产化适配优势硬件昇腾910B2 × 2✅高能效比,信创认证框架✅Ascend生态支持模型✅显存可控,效果优异调度DDP + HCCL✅高速并行通信部署✅完全国产链路。
2026-01-23 09:19:30
821
原创 【算法】一文搞懂Transformer
MultiHeadQKVConcathead1headhWOMultiHeadQKVConcathead1headhWOheadiAttentionQWiQKWiKVWiVheadiAttentionQWiQKWiKVWiV参数类别参数作用总结输入Q, K, VQuery:你要找什么,Key:我有什么,Value:我的信息是什么线性投影WiQW_i^QWi。
2026-01-19 11:04:42
932
原创 【风控】GBDT-XGBoost-Lightgbm
XGBoost:分裂点通常是样本特征值的中间点,通过一阶梯度和二阶梯度计算每个切分点增益。最佳分裂点:增益最大的点,同时增益需大于γ\gammaγ才分裂。缺点:Exact 方法在大数据上计算量大,需用 Approx 或 Sketch。GBDT小数据集、初学者理解、模型稳定性要求高XGBoost中大规模数据,追求精度,兼顾稳健性LightGBM超大规模数据训练、低延迟要求、类别特征多注意调节num_leavesmax_depth控制过拟合。
2026-01-16 09:27:40
974
原创 【风控】Boost和Bagging
Bagging适合基准风险模型、稳健性要求高的业务易解释、抗噪声,偏向保守型信用决策Boosting适合需要高精度风险预测的场景能捕捉非线性复杂关系,可与评分卡结合形成混合模型组合使用风控实践中,有时会将 Boosting 输出作为特征,再用逻辑回归或 Bagging 模型融合兼顾准确率和解释性。
2026-01-16 09:26:41
654
原创 【风控】最大似然估计
最大似然估计是逻辑回归训练的核心原理通过最大化观测数据的似然函数,得到最可能的参数优势:概率可解释、参数直观、可结合正则化在风控中,与 WOE 分箱、评分卡转换、线上审批决策紧密结合。
2026-01-16 09:25:47
648
原创 【风控】逻辑回归算法
逻辑回归:风控中核心二分类模型,输出概率,便于转化成评分卡关键公式:Sigmoid 函数 + 对数几率 + 最大似然估计风控实战流程:数据清洗 → 特征构建(分箱+WOE+IV)→ 模型训练 → 评估 → 评分卡生成 → 决策应用实践要点:特征线性化、类别处理、共线性检查、样本偏斜处理、模型可解释性逻辑回归在风控中被广泛采用,主要原因是可解释性强、模型稳定、易于与评分卡结合,同时也可通过正则化和特征工程提升预测能力。
2026-01-15 16:13:45
447
原创 【风控】贝叶斯算法
概率化风险评估:提供违约、欺诈、异常概率,而非单一判断;动态更新能力:随着数据增加实时修正风险;可解释性强:输出概率便于业务和监管理解;适应多场景:信用评分、欺诈检测、异常行为、综合评分等。设定历史先验(违约率、欺诈率、行为基线);收集客户或交易特征(证据);使用贝叶斯公式计算后验概率;根据后验概率制定风控策略;实时更新模型以适应新数据与新业务模式。
2026-01-15 16:11:18
438
原创 【LeetCode】大厂面试算法真题回忆(178)——旋转骰子
这道题表面是“字符串操作”,内核却是三维空间变换的离散建模。真正的算法高手,不是写代码的人,是能把物理世界抽象成数学模型的人。无论你是准备面试、参加竞赛,还是单纯想提升空间思维,这类题目都是绝佳的训练素材。它的状态,现在是哪一个?
2026-01-10 09:30:00
62
原创 【LeetCode】大厂面试算法真题回忆(177)——时间格式化
你写的每一行代码,都可能是千万人系统中的一个齿轮。不要满足于“能跑”——它能不能扛住 10 倍流量?它出错了,谁来发现?它能不能被别人看懂?它能不能被测试?它能不能被复用?真正的工程师,不靠“写得多”取胜,而靠“想得深”立足。
2026-01-10 08:00:00
52
原创 【LeetCode】大厂面试算法真题回忆(176)——明明的随机数
这道题,是算法世界的“Hello World”。如果数据变成 1~10^6,还能用计数排序吗?如果输入是流式数据,内存不够怎么办?如果我要实时去重,每秒处理 10000 个数,怎么设计?如果这是微服务的一部分,如何做监控、重试、降级?编程不是写代码,而是思考如何让机器更聪明地替你工作。它为什么这样写?它还能怎么写得更好?如果它跑在生产环境,会出什么问题?这才是编程的真正境界。
2026-01-09 09:15:08
72
原创 LangGraph--API介绍
维度Graph API编程范式声明式(What)命令式(How)状态管理全局共享、强类型 State函数局部、动态字典分支逻辑多条件、可视化路由简单 if/else、循环并行支持✅ 原生支持,自动调度❌ 需手动用 asyncio/threading学习曲线中高(需理解图结构)极低(就是普通函数)调试体验可视化流程 + 状态快照传统 print/debugger团队协作✅ 图可导出、可评审✅ 代码即文档,适合单人适用场景多智能体、复杂决策、长期运行快速原型、脚本封装、数据清洗持久化。
2026-01-09 08:53:14
1325
原创 LangGraph--RAG(1)
把 3 条有效文档 → 组织成“项目可研报告”的标准结构每个段落对应一个模块:背景、目标、方案、成本、风险用 LLM 生成格式规范、术语统一、逻辑严密的文本我们不是在“回答问题”,我们是在生成企业级文档。用户要的不是“答案”,是“报告”。传统 RAG 是“搜索引擎 + 大模型”。我们的系统,是一个懂业务、会判断、能计算、能写作的 AI 员工。知道什么时候该查文档知道什么时候该算数知道什么时候该重试知道什么时候该闭嘴它不完美,但它可靠。
2026-01-05 14:28:34
783
原创 LangGraph--工作流&智能体
提示链:适合结构化任务并行化:提高处理效率路由:动态决策协调器-工作器:最灵活的架构混合模式:结合多种模式的优势这些模式不是孤立的,而是可以组合使用。用路由选择处理路径用提示链处理每个路径用协调器-工作器处理复杂任务LangGraph为我们提供了一套完整的工具集,让复杂LLM应用的开发变得像搭积木一样简单。无论是企业级应用还是个人项目,都能从中受益。
2025-12-29 16:52:08
946
原创 【信创】算法开发适配
追求最低开发成本、工具链成熟、快速迭代 → 选海光(x86)+NVIDIA GPU + PyTorch(DDP + Triton)路径。如果目标是严格国产化、上昇腾生态长期运营 → 优先在 Ascend 上使用 MindSpore(或把 PyTorch 模型转为.om),并做好转换/兼容的工程投入预算。
2025-12-25 16:40:25
950
原创 【实战】不同数据类型下的处理方案
在结构化与序列混合特征建模中,数据语义表达的正确性多维分类入参策略数值型:标准化 / 归一化 → 直接输入离散类别型:Embedding → 可学习稠密向量有序类别型:数值化或Embedding(取决于非线性关系)周期型:Sin/Cos 编码 → 数值输入二值状态/事件型:0/1 或 Embedding序列型特征:CNN / LSTM / Transformer 建模网络设计原则子网络独立处理:不同特征类型在模型中应先独立编码或提取表示特征融合。
2025-12-23 14:31:38
1334
原创 【LeetCode】大厂面试算法真题回忆(175)——最低位排序
使用稳定排序确保个位数相同元素顺序不变对负数取绝对值计算个位数算法简单、时间复杂度低可扩展到其他按数字特定位排序问题。
2025-12-23 08:00:00
61
原创 【LeetCode】大厂面试算法真题回忆(174)——最佳植树距离、种树问题
核心是二分查找“最大最小间距”问题检查函数采用贪心策略放置树苗算法复杂度低,适合大规模坑位可扩展到类似“放置马、放置路灯”等问题。
2025-12-22 09:00:00
96
原创 【LeetCode】大厂面试算法真题回忆(173)——最大子矩阵
利用 Kadane 算法可以高效求解二维最大子矩阵和问题思路是将二维问题压缩为一维问题,再使用一维最大子数组和算法时间复杂度 O(N^2*M),空间复杂度 O(M)适合小规模矩阵,同时也可推广到更大矩阵结合其他优化方法。
2025-12-22 08:30:00
48
原创 【LeetCode】大厂面试算法真题回忆(172)——最大排列
核心是自定义排序,比较x+y与y+x的大小时间复杂度O(n log n),适合大多数输入场景与排列组合暴力方法相比更高效,更工程化四种语言实现,方便跨语言对照学习。
2025-12-21 09:00:00
45
原创 【LeetCode】大厂面试算法真题回忆(171)——第N个排列
本题是排列问题中最具代表性的数学建模题之一关键在于从“生成排列”转向“直接定位排列”阶乘进制 / 康托展开是解决此类问题的通用工具该方法在算法竞赛、面试以及工程代码中均具有极高的实用价值。
2025-12-21 08:45:00
60
原创 【LeetCode】大厂面试算法真题回忆(170)——最大收益股票收益问题
dp[i][0]:第i天结束后,持有股票时的最大现金dp[i][1]:第i天结束后,不持有股票时的最大现金本题是股票多次交易 DP 模型的标准变体多币种输入属于数据预处理问题,不应干扰核心算法动态规划状态定义清晰、转移稳定含手续费含冷冻期限制交易次数在工程实践中,正确抽象问题模型往往比代码本身更重要。
2025-12-20 09:00:00
108
原创 【LeetCode】大厂面试算法真题回忆(169)——最大相连男生数
方向坐标变化水平(0, -1)垂直(-1, 0)主对角线(-1, -1)副对角线(-1, +1)设以(i, j)结尾在第k个方向上的连续M数量else:本题不是图搜索问题,而是二维矩阵方向性连续统计问题DFS 思路直观,但工程上不推荐动态规划 + 单次扫描是最优解法该模型在图像处理、棋盘分析、矩阵特征提取中非常常见。
2025-12-20 08:30:00
86
原创 【LeetCode】大厂面试算法真题回忆(168)——最小传递延时
权重w ≥ 0,表示从u到v的消息传递延时给定源节点src与目标节点dst目标:计算从src到dst的最小路径权重和;若dst不可达,返回-1。本题是典型的DAG 最短路径问题回溯解法不适合工程实现拓扑排序 + 动态规划是最优方案该解法在通信网络、任务调度、依赖分析等领域具有广泛应用价值。
2025-12-19 08:45:45
108
原创 【信创】中间件对比
中间件并非“是否替换”的问题,而是**“如何在稳定、成本、可控之间取得最优解”**。在信创背景下,国产中间件已从“可用”迈向“好用”,未来的关键在于规模化落地、生态成熟与工程经验积累。
2025-12-17 14:20:19
2206
原创 【LeetCode】大厂面试算法真题回忆(165)——最小步骤数
第一步范围有限,可以完全枚举;后续跳跃严格确定,不存在分支;因此整题本质是“测试所有链式跳跃路径”。
2025-12-13 09:00:00
58
原创 【信创】数据库对比
说明:华为有商用产品 GaussDB,同时 openGauss 是华为主导的开源社区版;两者关系与定位不同(商用版在企业支持、增强特性与云服务侧更完善)。注:上表的“公开价格线索”仅供估算参考;生产采购前请向厂商或其渠道获取正式报价与合同条款(包含 SLA、升级、补丁、源码支持/定制化等)。如果模型训练在 GPU 集群上,数据库更多作为“数据湖/特征库/元数据服务”;大模型训练/推理对数据库的需求主要是。为了便于决策,我把每款国产库与。
2025-12-12 09:08:11
905
华为OD目标院校名单(2024.07新版).xlsx
2025-02-06
2016年世界失业人员教育程度构成
2025-01-10
中国农业年鉴2011数据集
2025-01-10
1994-2025中国考研人数变化
2025-01-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅