一、为什么要分词?
- 将原始文本转为模型可处理的输入
绝大多数模型(如 RNN、Transformer)都以“词”或“子词”作为基本输入单元,必须先将文本切分成 token,再映射到向量空间。 - 降低词表(vocabulary)规模
特别是子词级别分词(Subword Tokenization),能兼顾表达能力与词表大小,避免出现过多的“未登录词(OOV)”。 - 增强模型泛化能力
将生僻词拆分为常见子词,有助于模型处理新词、拼写错误或多种拼写变体。
二、分词的主要类型
类别 | 级别 | 优点 | 缺点 | 应用场景 |
---|---|---|---|---|
字符级 | Character | 简单、零 OOV | 序列过长、语义信息稀薄 | 语言模型预训练、某些拼写校正任务 |
词级 | Word | 语义完整 | OOV 问题严重、词表巨大 | 传统 NLP 任务(文本分类、命名实体识别) |
子词级 | Subword | 兼顾 OOV 缩减与语义完整 | 需要预先训练分词模型 | 现代预训练模型(BERT、GPT、T5 等) |
三、常见子词分词算法
1. Byte Pair Encoding(BPE)
-
核心思想:从字符级开始,反复将最频繁出现的连续字符对(byte pair)合并为一个新符号,直到达到预设合并次数或词表大小。
-
算法流程:
- 初始化:将所有词拆成字符序列,并统计所有相邻字符对的频率;
- 重复 nn 次:选取频率最高的字符对 (a,b)(a,b),合并为新符号 “ab”,更新所有词的序列与频率;
- 最终输出:合并后形成的符号集即为子词词表。
-
优点:简单高效;能自动学习常见词缀、词根。
-
缺点:合并过程是贪心的,可能忽略长范围的全局最优。
2. WordPiece
-
核心思想:类似 BPE,但在合并时最大化语言模型(通常是 unigram LM)的似然。
-
算法流程:
- 初始化:同 BPE,以字符为单位;
- 每次合并候选子词,评估合并后在语料上根据语言模型的损失(负对数似然)变化,选择对损失贡献最大的合并;
- 重复至词表大小目标。
-
优点:模型驱动,子词更能提升语言建模效果;
-
缺点:计算开销较 BPE 大。
3. Unigram Language Model
- 核心思想:直接假设文本由一组子词以 unigram(独立同分布)方式生成,用 EM 算法学习每个子词的概率,并剪除低概率子词直至词表大小。
- 算法流程:
- 收集所有可能子词(长度上限);
- E 步:计算每个子词在所有切分方案中的后验概率;
- M 步:根据后验概率重新估计子词概率;
- 剪枝:移除最不重要的子词,直至词表符合大小要求;
- 重复 E/M/剪枝。
- 优点:生成式视角,灵活且精度高;
- 缺点:训练与推理速度相对较慢。
四、中文分词的特殊性
中文文本没有空格分隔词,因此需要额外的策略:
-
基于词典的最大匹配法
- 正向最大匹配(MM):从左向右尽量匹配长词;
- 逆向最大匹配(RMM):从右向左。
- 改进:双向同时匹配并根据最小分词数、单字数等原则选择最佳分词。
-
基于统计的隐马尔可夫模型(HMM)
- 将分词看作序列标注,状态一般为 {B, M, E, S}(词首、中、尾、单字),用已标注语料估计转移与发射概率,通过 Viterbi 解码最优路径。
-
基于条件随机场(CRF)
- 在 HMM 基础上添加更多特征(字 n-gram、数字、标点等),用全局最优的 CRF 进行标注,性能更好。
-
深度学习序列标注
- BiLSTM-CRF、BERT-Softmax、Transformer-CRF 等,将分词当作序列分类/标注问题,性能进一步提升。
-
混合方法
- 结合词典、规则、统计和神经网络,多层次、多策略融合使得分词更精准。
五、主流工具与实现
语言/框架 | English Tokenizers | 中文分词工具 |
---|---|---|
Python | • Hugging Face tokenizers 实现 BPE/WordPiece/Unigram• NLTK word_tokenize • spaCy nlp.tokenizer | • jieba• pkuseg• THULAC• HanLP |
Java | OpenNLP Tokenizer、Stanford CoreNLP | IKAnalyzer、Ansj |
C++/Rust | Hugging Face tokenizers (Rust 库) | – |
# 以 Hugging Face tokenizers 为例:加载 BPE 分词器
from tokenizers import Tokenizer, models, pre_tokenizers, trainers
# 1. 初始化空 BPE 模型
tokenizer = Tokenizer(models.BPE())
tokenizer.pre_tokenizer = pre_tokenizers.Whitespace()
# 2. 训练:传入文本文件列表,设置词表大小
trainer = trainers.BpeTrainer(vocab_size=30000, show_progress=True)
tokenizer.train(files=["corpus.txt"], trainer=trainer)
# 3. 分词示例
output = tokenizer.encode("This is a test sentence for tokenization.")
print(output.tokens)
六、实践要点与建议
-
根据任务选择粒度
- 文本分类、情感分析等可用词级或子词级;
- 预训练语言模型几乎都用子词级。
-
词表大小与 OOV 权衡
- 词表越大,OOV 越少,但模型体积和计算开销也越高;
- 通常 2–5 万级别的子词表在多数场景下效果较好。
-
规范化与清洗
- 分词前做统一大小写、标点、特殊符号处理;
- 对中文可先进行全角转半角、简繁体统一。
-
保留或剔除空格/子词前缀
- 某些实现(如 Hugging Face 的 “##” 前缀)指明子词是否是词中一部分;
- 在下游任务中要注意处理或移除这些特殊标记。
-
多语言混合场景
- 可先按空格分割粗粒度语言,再对其中每种语言用专用分词器细分;
- 或使用 Unicode 脚本判断走不同分词流程。