机器学习--监督学习之梯度下降法

本文介绍了监督学习的概念,强调了有监督学习的优势,并以分类和回归问题为例。重点讨论了梯度下降法,解释了如何通过负梯度方向寻找极小点,以及在房价预测问题上的应用。还分享了一个简单的梯度下降法代码实现。
摘要由CSDN通过智能技术生成

最近在看stanford 吴恩达老师的机器学习课程,附上网易公开课的地址http://open.163.com/special/opencourse/machinelearning.html

突然心血来潮想要把每节课的内容整理到博客上面,因为觉得给别人看到的东西我才会真正好好的思考保证尽量没有错误的概念,对自己是一种很好的提高!第一课的内容是一些介绍性的东西就不写了,从第二课监督学习之梯度下降法开始!

一、什么是监督学习?

首先,机器学习的思路是编写算法让机器从人类已有的经历中获取经验,从而具备独立解决问题的能力。是否有监督(supervised),要看给的数据是否有标记。以分类算法为例,已知一组特征量,我们知道这些特征量分别对应什么类别,通过学习这些特征量和其类别之间的关系,可以在下次给定一个特征量时做出对其类别的准确判断,即为监督学习。而无监督的分类算法,即输入的特征量没有标记,就好比你在刷题的时候没有准确答案,考试时给你一道相似的题还是不会,无监督的分类算法又称为聚类算法,效果显然是没有监督学习好的。监督学习重要的两个代表是分类问题(classification problem)和回归问题(regression problem),这节课吴恩达老师以回归问题为例,介绍了梯度下降法作为学习算法的应用。

二、梯度下降法 </

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值