在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)
代码
public static int findMaxSumOfSubArray(int[] array) {
if (array == null || array.length == 0) {
throw new IllegalArgumentException("array is null or empty.");
}
if (array.length == 1) {
return array[0];
}
// 初始化累加值和最大值为数组第一个元素
int sum = array[0];
int maxSum = array[0];
// 从数组第二元素开始遍历
for (int i = 1; i < array.length; i++) {
// 如果当前累加值为负数,则无需在累加,因为加上当前元素值后,无论如何都不会比当前元素的值大
// 所以讲累加值变量更新为当前元素值
// 如果不为负数,则累加当前元素值
if (sum < 0) {
sum = array[i];
} else {
sum += array[i];
}
// 如果当前累加值大于最大值,则更新最大值
if (sum > maxSum) {
maxSum = sum;
}
}
return maxSum;
}
public static void main(String[] args) {
int[] array = {6, -3, -2, 7, -15, 1, 2, 2};
int max = findMaxSumOfSubArray(array);
System.out.println(max);
}
返回连续子数组最大和对应的连续子数组
public static int[] findSubArrayWithMaxSum(int[] array) {
if (array == null || array.length == 0) {
throw new IllegalArgumentException("array is null or empty.");
}
if (array.length == 1) {
return array;
}
// 初始化累加值和最大值为数组第一个元素
int sum = array[0];
int maxSum = array[0];
// 记录计算sum的起始位置
int start = 0;
// 记录当前最大值对应的起始位置
int maxStart = 0;
// 记录当前最大值对应的终止位置
int maxEnd = 0;
// 从数组第二元素开始遍历
for (int i = 1; i < array.length; i++) {
// 如果当前累加值为负数,则无需在累加,因为加上当前元素值后,无论如何都不会比当前元素的值大
// 所以将累加值变量更新为当前元素值,并且将起始位置更新为当前元素的位置
// 如果不为负数,则累加当前元素值
if (sum < 0) {
sum = array[i];
start = i;
} else {
sum += array[i];
}
// 如果当前累加值大于最大值,则更新最大值,同时更新最大值对应的起始终止位置
if (sum > maxSum) {
maxSum = sum;
maxStart = start;
maxEnd = i;
}
}
int[] result = new int[maxEnd - maxStart + 1];
for (int i = maxStart; i <= maxEnd; i++) {
result[i - maxStart] = array[i];
}
return result;
}
public static void main(String[] args) {
int[] array = {-3, 6, -3, -2, 7, -15, 1, 2, 2};
int[] result = findSubArrayWithMaxSum(array);
// 输出为 6 -3 -2 7
for (int i : result) {
System.out.print(i + " ");
}
}