- 博客(150)
- 收藏
- 关注
原创 量子机器学习
量子机器学习(QML)融合量子计算与机器学习,利用量子比特的叠加态和纠缠态等特性,实现数据处理和算法优化的突破。该技术在药物研发、金融建模、供应链优化等领域展现应用潜力,但仍面临硬件误差、算法开发等挑战。随着容错量子计算的发展和混合模型的改进,量子机器学习有望推动AI、气候建模等领域的革新。
2026-01-15 16:43:19
496
原创 机器学习 —— 信赖域方法
摘要: 信赖域方法是强化学习中确保策略优化稳定性的关键技术,通过约束参数更新幅度避免性能波动。核心算法包括:TRPO(利用KL散度约束策略差异)、PPO(通过裁剪机制限制更新幅度)和自然梯度下降(基于曲率调整步长)。这些方法在深度强化学习中面临近似误差、高计算成本和超参数敏感等挑战,但仍是维持学习稳定性的有效手段,广泛应用于机器人、自动驾驶等领域。
2026-01-15 08:02:41
644
原创 深度确定性策略梯度(DDPG)
深度确定性策略梯度(DDPG)是一种针对连续动作空间的强化学习算法,融合了Q学习和策略梯度方法。它采用演员-评论家架构,其中演员网络输出确定性动作,评论家网络评估动作价值。DDPG通过经验回放存储过往经验,利用目标网络实现稳定训练,并引入噪声促进探索。该算法适用于机器人控制等连续动作任务,但面临训练不稳定和探索不足的挑战。核心优势在于将深度Q网络扩展到连续动作空间,采用确定性策略而非随机策略。
2026-01-13 11:56:04
640
原创 深度 Q 网络(DQN)
深度Q网络(DQN)结合了深度神经网络与Q学习,解决了传统Q学习在大规模状态空间中的局限性。其核心组件包括神经网络架构、经验回放机制、目标网络和ε-贪婪策略。DQN通过神经网络逼近Q值,利用经验回放提高训练稳定性,并采用目标网络减少发散风险。后续改进的双DQN解决了Q值高估问题,而竞争DQN则将状态值与动作优势分离,进一步提升了学习效率。尽管DQN在离散动作空间表现优异,但仍存在训练不稳定、计算成本高等局限性。
2026-01-13 11:50:00
1081
原创 深度强化学习
深度强化学习(Deep RL)是机器学习的重要子集,由强化学习与深度学习融合而成,核心优势在于无需人工设计状态空间,能通过深度学习处理非结构化输入数据,助力智能体自主学习决策,即便面对大规模输入也能优化目标行动方案。其核心构成要素包括智能体、环境、状态、行动等关键部分,各要素协同构建高效学习环境,搭配探索 - 利用策略、经验回放等技术,保障学习的稳定性与有效性。
2026-01-12 17:49:13
470
原创 时序差分学习
时序差分(TD)学习是一种结合蒙特卡洛方法和动态规划优势的强化学习技术,通过利用未来预测差异来更新价值函数,实现实时自适应学习。其核心参数包括学习率α、折扣率γ和探索率ε。主要算法有TD(0)、TD(1)和TD(λ),分别对应不同时间步长的价值估计。相比Q学习,TD学习侧重状态价值估计而非动作价值。TD误差作为关键指标,反映了预测与实际奖励的差距。该方法优势在于可处理连续任务、低变异性,但也面临初始值敏感和估计偏差的挑战,广泛应用于机器人、游戏和金融等实时决策领域。
2026-01-12 13:51:30
1045
原创 强化学习中的蒙特卡洛方法
摘要:强化学习中的蒙特卡洛方法通过与环境交互的经验片段进行学习,无需先验知识。该方法通过重复采样估算状态或动作价值,包括在线策略和离线策略两种方式。蒙特卡洛控制算法通过改进动作价值函数优化策略,适用于游戏、机器人及金融等领域。但其存在高方差、长片段效率低等局限性,在大规模状态空间学习较慢。
2026-01-11 14:10:19
1158
原创 演员 - 评论家强化学习方法
摘要:演员-评论家方法是一种结合策略优化与价值评估的强化学习算法。该方法通过演员组件选择动作,评论家组件评估动作价值,利用优势函数实现高效学习。其优势包括样本效率高、收敛快、适用于离散/连续动作空间,但也面临高方差、训练稳定性等挑战。主要变体包括A2C、A3C、SAC等,其中A3C通过并行智能体异步更新提升稳定性。该方法通过策略梯度与价值函数协同优化,在探索与利用间取得平衡,适用于各类强化学习任务。
2026-01-11 14:08:08
813
原创 强化学习算法
强化学习算法是一类通过环境交互优化决策的机器学习方法,分为基于模型和无模型两种类型。基于模型算法(如动态规划、蒙特卡洛树搜索)先构建环境模型进行预测,具有较高样本效率但计算复杂;无模型算法(如Q学习、策略梯度)直接通过试错学习策略,更简单但需要更多交互。两类算法在效率、复杂度和适应性等方面各有特点,适用于不同场景的智能决策问题。
2026-01-10 21:54:54
495
原创 SARSA 强化学习
SARSA是一种基于在线策略的强化学习算法,其名称来源于"状态-动作-奖励-状态-动作"的学习序列。该算法通过Q值迭代更新,使智能体在环境中通过试错法学习最优策略。核心流程包括Q表初始化、ε-贪婪策略选择动作、执行动作获取奖励、更新Q值并选择新动作。与Q学习相比,SARSA采用在线策略更新,收敛较慢但更稳定,适用于医疗、交通管理等安全性要求高的场景。两者主要区别在于策略类型、更新规则和适用环境。
2026-01-10 15:45:12
799
原创 REINFORCE 算法
REINFORCE算法是一种基于蒙特卡洛的策略梯度强化学习方法,由Williams于1992年提出。该算法通过采样完整情节轨迹,计算回报梯度并更新策略参数来优化智能体决策。其优势在于无需环境模型、实现简单且能处理高维动作空间,但存在梯度估计方差大和样本效率低的缺点。作为无模型方法,REINFORCE通过直接最大化期望累积奖励来训练智能体,是策略梯度算法中的基础方法。
2026-01-10 15:34:15
955
原创 机器学习-Q学习
Q学习是一种基于价值的强化学习算法,通过迭代优化智能体的决策行为。其核心是Q值函数,利用时序差分法和贝尔曼方程评估状态-行动对的预期奖励。算法流程包括Q表初始化、状态观测、行动决策、奖励评估和Q表更新等步骤。Q学习具有无模型、异策略等优势,适用于游戏AI、推荐系统、机器人控制等领域,但也存在探索-利用平衡困难等局限。该算法通过试错学习机制,使智能体逐步掌握最优决策策略。
2026-01-09 19:22:22
1147
原创 机器学习:强化学习算法
强化学习是机器学习的一个分支,通过智能体与环境的交互来学习最优策略。核心要素包括智能体、环境、状态、动作、奖励和策略。智能体通过试错过程,根据环境反馈的奖励调整策略,目标是最大化长期累积奖励。主要算法包括基于价值的Q-Learning和SARSA,基于策略的策略梯度,以及结合两者的Actor-Critic方法。强化学习广泛应用于游戏AI、机器人控制、推荐系统、自动驾驶和资源调度等领域。
2026-01-09 08:43:51
806
原创 机器学习 —— 主成分分析(PCA)
主成分分析(PCA)是一种无监督降维技术,通过识别数据中的主成分(原始变量的线性组合)来降低维度。其核心思想是方差最大化,确保降维后的特征保留最大信息量。PCA实现步骤包括数据标准化、协方差矩阵计算、特征分解和主成分选择。该方法在数据可视化、模型预处理和图像压缩等场景有广泛应用,优势包括显著降维和提升计算效率,但也存在信息损失和对异常值敏感等局限。PCA与LDA等监督降维算法不同,专注于整体数据方差最大化。
2026-01-09 08:00:43
1298
原创 机器学习 —— 缺失值比例法
摘要:缺失值比例法是一种机器学习特征选择技术,用于处理数据集中缺失值比例过高的特征。该方法通过计算各特征缺失比例并设定阈值,剔除高缺失值特征,从而优化模型性能。实施步骤包括计算缺失比例、设定阈值、剔除特征和模型训练。不同缺失比例区间(如<5%、5%-20%、20%-80%、>80%)需采取不同处理策略。该方法虽能节省计算资源、简化模型结构,但也可能导致信息丢失和选择偏差。实际应用中需注意区分缺失类型、避免数据泄露,并根据业务需求灵活调整阈值。
2026-01-08 17:42:26
601
原创 机器学习 - 低方差滤波
摘要:低方差滤波是一种机器学习特征选择技术,通过计算特征方差并移除低于阈值的特征来降维。其核心原理是低方差特征区分能力弱,对模型贡献小。实现步骤包括计算方差、设定阈值、过滤特征和模型训练。该方法能减少过拟合、节省计算资源,但可能导致信息丢失和选择偏差。示例代码展示了Python实现过程,适用于高维数据预处理。该方法简单高效,但需谨慎设定阈值以避免误删重要特征。
2026-01-08 08:21:45
612
1
原创 机器学习 - 高相关性筛选法
摘要:高相关性筛选法是机器学习中用于特征选择的技术,通过计算特征间的相关系数并设定阈值来移除冗余特征。该方法能减少多重共线性、提升模型性能并降低计算成本,但也存在信息丢失、无法处理非线性关系等局限。Python实现时需计算相关矩阵并设定阈值筛选特征,最终保留关键特征用于模型训练。该技术适用于线性关系数据集,但需权衡简化模型与潜在信息损失的风险。
2026-01-08 08:12:48
846
原创 机器学习 —— 前向特征构造
摘要:前向特征构造是一种机器学习特征选择方法,通过逐步添加最优特征来构建特征集。该方法从空集开始,每次迭代评估剩余特征对模型性能的提升,选择提升最大的特征加入集合,直到达到预设特征数量。其优势在于计算高效,适合高维数据,但可能无法获得最优解,特别是在特征相关或存在非线性关系时。文中提供了Python实现示例,使用糖尿病数据集演示了如何通过线性回归模型逐步选择特征并评估性能,最终输出所选特征及其对应的模型得分。
2026-01-08 08:06:01
807
原创 机器学习 —— 向后消除法
摘要:向后消除法(Backward Elimination)是机器学习中的一种特征选择技术,用于筛选预测模型的最重要特征。该技术的核心逻辑是:初始时纳入所有特征,随后通过迭代方式逐步移除显著性最低的特征,直至得到能使模型性能最优的特征子集。
2026-01-07 17:40:21
623
原创 机器学习 —— 降维
摘要:本文系统介绍了机器学习中的降维技术,包括特征选择和特征提取两大类方法。特征选择部分详细阐述了过滤法、包装法和嵌入法三种技术及其Python实现;特征提取部分重点讲解了PCA算法及其应用。文章通过乳腺癌和鸢尾花数据集的实践案例,展示了不同降维方法的效果比较和可视化呈现,并分析了降维技术的优势(如降低维度、提升性能)与局限性(如信息丢失、计算复杂度)。这些方法能有效解决高维数据带来的过拟合、计算效率低等问题,为机器学习模型优化提供重要技术支持。(149字)
2026-01-07 17:23:53
985
原创 机器学习中的层次聚类(凝聚型)
摘要:层次聚类(凝聚型)是一种自底向上的无监督聚类算法,通过逐步合并最近邻簇构建层次结构。该算法首先将每个样本视为独立簇,然后基于距离度量(如Ward法、单链接法等)迭代合并簇,最终形成树状图。Python实现中,可使用scikit-learn的AgglomerativeClustering和scipy的dendrogram函数进行聚类分析和可视化。虽然算法能直观展示数据层次关系且无需预设簇数,但对距离度量敏感且计算复杂度较高。典型应用包括客户细分、文档聚类等场景。
2026-01-07 17:12:36
965
原创 机器学习 - 基于分布的聚类
摘要:基于分布的聚类算法假设数据由混合概率分布生成,通过拟合分布参数实现聚类。高斯混合模型(GMM)是典型算法,使用EM算法迭代估计高斯分布的均值、协方差和混合系数。相比K-Means,GMM支持软分配和任意形状簇,但对初始参数敏感且计算成本较高。Python中可通过Scikit-learn的GaussianMixture类实现,适用于图像分割、异常检测等场景,但对非高斯分布数据效果有限。
2026-01-07 13:09:26
1008
原创 机器学习 - 亲和传播算法
亲和传播算法是一种无需预设聚类数量的无监督学习方法,通过消息传递机制自动识别数据中的"范例点"作为聚类中心。该算法通过交替更新责任矩阵(反映样本适配度)和可用性矩阵(反映中心认可度)实现聚类,适用于中小规模数据集。其优势在于自动确定聚类数量和处理复杂形状数据,但存在计算成本高、对参数敏感等局限。Python中可通过scikit-learn的AffinityPropagation类实现,需重点调整preference和damping参数。该算法在生物信息学、图像处理等领域有广泛应用,但大数
2026-01-07 08:42:30
732
原创 机器学习 - BIRCH 聚类
BIRCH聚类是一种高效处理大规模数据的层次聚类算法。它通过构建CFTree树形结构,使用聚类特征(CF)汇总数据统计信息,实现单次扫描数据即可完成初步聚类。算法核心优势在于内存效率高、计算速度快,适合百万级样本处理。BIRCH包含三个关键步骤:初始化、聚类和优化,通过参数threshold和n_clusters控制聚类粒度。虽然对非球形聚类效果有限,但其出色的可扩展性使其成为大数据场景的理想选择。Python中可通过scikit-learn的Birch类实现,并配合调整兰德指数(ARI)评估聚类效果。
2026-01-07 08:10:52
1164
原创 机器学习 - BIRCH 聚类
BIRCH是一种高效的层次聚类算法,适用于大规模数据集。它通过聚类特征(CF)和子聚类特征(SCF)数据结构构建树形聚类结构,包含初始化、聚类和优化三个步骤。Python中可使用scikit-learn的Birch类实现,具有可扩展性强、内存效率高等优点,但对参数敏感且处理非球形聚类能力有限。该算法默认使用欧氏距离,在聚类速度和内存使用方面表现优异,但应用场景受限于其假设条件。
2026-01-07 07:59:54
1040
原创 机器学习 —— 基于密度的聚类
本文系统介绍了三种基于密度的聚类算法:DBSCAN、OPTICS和HDBSCAN。DBSCAN通过核心点、边界点和噪声点的概念识别聚类,适合处理均匀密度的任意形状数据;OPTICS改进了DBSCAN,能处理密度不均的数据并生成层次聚类;HDBSCAN进一步优化,通过最小生成树自动提取稳定聚类,对参数鲁棒性更强。文章详细阐述了各算法原理、Python实现步骤及优缺点对比,指出HDBSCAN在密度适应性、噪声处理和参数敏感性方面的优势,同时也分析了其计算成本和结果解释的挑战。通过代码示例和可视化结果,展示了这些
2026-01-06 13:45:26
633
原创 机器学习中的层次聚类
层次聚类是一种无监督学习算法,分为凝聚式(自底向上合并)和分裂式(自顶向下拆分)两种。凝聚式层次聚类通过逐步合并最近邻数据点形成簇,最终以树状图展示层次结构。文章通过两个示例演示了该方法:首先使用模拟数据说明如何通过树状图确定最佳簇数(2个簇),然后应用在皮马印第安人糖尿病数据集上,选取两个特征进行4簇划分。实现过程包括距离计算、树状图分析、模型训练与可视化,展示了层次聚类在数据分组中的实际应用。
2026-01-06 13:07:05
523
原创 机器学习中的均值漂移聚类算法
均值漂移聚类算法是一种基于密度的非参数聚类方法,通过迭代将数据点向密度最高区域移动实现聚类。与K均值不同,它无需预设簇数,自动根据数据确定簇数。算法流程包括初始化簇、计算质心、迭代移动和收敛停止。Python实现可使用scikit-learn库,主要步骤包括数据生成、带宽估计、模型训练和结果可视化。该算法在计算机视觉、图像处理等领域有广泛应用,优势在于无需模型假设、能处理复杂形状簇,但高维数据表现不佳且无法控制簇数。
2026-01-06 13:06:13
619
原创 机器学习 - K - 中心聚类
K-中心聚类算法通过选取代表性中心点进行聚类,相比K-均值对异常值更具鲁棒性。其实现步骤包括初始化中心点、分配数据点和迭代更新中心点。使用Python的scikit-learn库可快速实现该算法,其中KMedoids类支持自定义距离度量。虽然算法计算效率较高且支持非欧氏距离,但对簇数k的选择敏感,且在高维数据上性能受限。通过可视化可直观展示聚类结果,中心点以红色叉号标记。
2026-01-06 13:05:22
641
原创 机器学习中的K-均值聚类算法
摘要:K-均值聚类是一种基于距离的平坦聚类算法,通过迭代计算质心将数据点分配到K个簇中。其步骤包括:初始化K个质心,计算数据点到质心的距离,重新分配数据点并更新质心,直至收敛。该算法高效且适用于大数据,但对初始质心敏感且需预先确定K值。应用场景包括图像分割、客户细分、异常检测等。Python实现可通过scikit-learn库完成,但需注意数据标准化和多次初始化以避免局部最优。算法优势在于简单快速,但存在对初始值和数据尺度敏感的局限性。
2026-01-06 07:54:02
947
原创 机器学习中的聚类算法
本文概述了聚类算法这一无监督机器学习方法。文章首先介绍了聚类的基本概念和作用,然后详细阐述了五种主要的聚类形成方法:基于密度、层级、划分、网格等方法。重点分析了11种常用聚类算法(如K-means、DBSCAN、HDBSCAN等)的原理和特点。随后探讨了三种评估聚类质量的指标:轮廓分析、戴维斯-布尔丁指数和邓恩指数。最后列举了聚类在数据压缩、客户细分、生物数据分析等领域的广泛应用。全文系统性地呈现了聚类算法的技术体系和应用价值。
2026-01-05 13:25:30
899
原创 机器学习中的随机梯度下降
摘要: 随机梯度下降(SGD)是机器学习中高效的优化算法,通过单个样本或小批量数据迭代更新参数,比传统梯度下降更快且节省内存。其核心是随机选择样本计算梯度并反向调整参数,适用于大规模稀疏数据(如文本分类)。优势包括高效性、快速收敛和逃离局部极小值的能力,但面临噪声梯度、学习率调优等挑战。Python示例展示了SGD分类器在鸢尾花数据集上的应用,准确率达77.5%。SGD虽非完整模型,但在稀疏数据场景中表现卓越。
2026-01-05 13:14:18
988
原创 机器学习中的混淆矩阵
摘要:混淆矩阵是评估分类模型性能的重要工具,通过对比实际类别和预测类别来展示分类结果。它包含四个关键指标:真阳性(TP)、真阴性(TN)、假阳性(FP)和假阴性(FN)。以垃圾邮件分类为例,TP表示正确识别的垃圾邮件,TN表示正确识别的非垃圾邮件,FP表示非垃圾邮件被误判为垃圾邮件,FN表示垃圾邮件被误判为非垃圾邮件。通过混淆矩阵可以计算准确率、精确率、召回率等性能指标。在Python中可以使用scikit-learn的confusion_matrix()函数实现,并配合Seaborn库进行可视化展示。混淆
2026-01-05 11:28:49
1321
原创 机器学习中的随机森林算法
摘要:随机森林是一种集成学习算法,通过构建多个决策树并综合其预测结果来提高准确性。该算法具有抗过拟合、处理缺失数据、识别特征重要性等优势。本文详细介绍了其工作原理,包括随机抽样、构建决策树、投票预测等步骤,并提供了Python实现示例(使用Iris数据集)。虽然随机森林准确率高、适用性强,但也存在计算复杂度高、预测速度慢等缺点。实验结果显示该算法在测试集上达到98.1%的准确率,验证了其有效性。
2026-01-05 08:19:27
743
原创 机器学习中的支持向量机(SVM)
支持向量机(SVM)是一种监督学习算法,主要用于分类任务。其核心思想是通过寻找最优超平面来最大化不同类别间的间隔距离,其中靠近超平面的关键数据点称为支持向量。SVM通过核技巧处理非线性可分数据,常用核函数包括线性核、多项式核和径向基函数(RBF)核。Python实现中可使用scikit-learn库,需注意参数调优(如正则化参数C和核参数)对模型性能的影响。SVM优势在于高维数据处理能力强、内存效率高,但存在训练耗时、不适用于大规模数据及类别重叠场景的局限性。
2026-01-05 08:09:03
1164
原创 机器学习中的决策树算法
决策树是一种基于树形结构的分类和预测算法,通过递归拆分数据生成决策规则。它分为分类树(用于类别预测)和回归树(用于数值预测)两种类型,使用基尼指数或信息增益作为分割标准。算法通过计算基尼分数、拆分数据集和评估所有分割来构建树结构,最终形成由决策节点和终端节点组成的预测模型。Python实现中可利用scikit-learn库加载鸢尾花数据集,训练决策树分类器并评估准确率,还能可视化树结构。该算法简单直观,适合处理分类问题,但需注意过拟合风险。
2026-01-04 16:40:01
975
原创 朴素贝叶斯算法在机器学习中的应用
朴素贝叶斯算法是一种基于贝叶斯定理的分类方法,假设特征间相互独立。它通过计算特征概率来判断样本类别,主要类型包括高斯、多项式和伯努利三种,分别适用于连续变量、离散计数和二元特征。Python实现展示了高斯模型的应用过程。该算法优点包括实现简单、训练数据少、可扩展性强,但存在特征独立性假设过强和零频率问题。典型应用场景涵盖实时预测、文本分类(如垃圾邮件过滤)和推荐系统等。
2026-01-04 13:28:20
954
原创 机器学习中的逻辑回归
逻辑回归是一种监督学习分类算法,主要用于预测二元目标变量的概率,也可扩展到多分类问题。文章介绍了逻辑回归的基本概念、数学模型(S形函数)及其在Python中的实现方法。通过Iris和Digits数据集示例,分别演示了二元逻辑回归和多项逻辑回归的应用,包括数据预处理、模型训练和评估过程。其中二元逻辑回归准确率达到95.69%,展示了该算法在实际分类问题中的有效性。文章还讨论了逻辑回归的不同类型(二项式、多项式和序数)及其适用场景,为读者提供了全面的逻辑回归入门指南。
2026-01-04 11:17:56
832
原创 机器学习中的分类算法
机器学习分类是一种监督学习技术,通过训练带标签数据预测新数据的类别。摘要要点: 分类类型:包括二元分类(如垃圾邮件检测)和多类分类 学习器类型: 懒惰学习者(如KNN) 积极学习者(如决策树、神经网络) 常用算法:逻辑回归、SVM、决策树、随机森林等 模型构建步骤:数据准备→特征选择→模型训练→评估调优→部署 评估指标:准确率、精确率、召回率、特异性等 应用实例:使用Python的scikit-learn库构建乳腺癌分类器,准确率达95.17% 分类算法广泛应用于垃圾邮件过滤、图像识别、欺诈检测等领域。
2026-01-04 07:55:43
1009
原创 机器学习中的多项式回归
多项式回归是一种回归分析方法,通过将自变量与因变量之间的关系建模为n次多项式函数来捕捉非线性关系。本文详细介绍了多项式回归的原理、应用场景及Python实现过程。使用Scikit-learn库对冰淇淋销售数据进行建模,通过数据准备、特征转换、模型训练和评估等步骤,构建了一个二次多项式回归模型。该模型R平方得分为0.932,表明能解释93%的数据变异。最后通过可视化展示回归曲线,并演示了新数据的预测过程。多项式回归特别适用于线性回归无法拟合的非线性数据集。
2026-01-03 20:22:41
724
Deep Learning Crash Course for Beginners深度学习视频教程
2025-12-17
Caer - 现代计算机视觉实时处理库
2025-12-06
《4小时学会Python使用OpenCV》源代码
2025-12-06
学习使用 Python 自动化 Excel 任务
2025-12-05
使用 Python openpyxl 模块对 Excel 文件进行读写视频教程
2025-12-05
PMP项目管理思维导图
2025-12-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅