- 博客(15)
- 收藏
- 关注
原创 SLAM中的非线性优化-2D图优化之边缘化(舒尔补)/先验Factor/FEJ实战(十三)
本文介绍了边缘化过程的实现与应用,通过模拟匀速直线运动的小车轨迹进行滑动窗口优化。开发者创建了一个窗口大小为5的优化器,连续添加10个位姿顶点和对应的里程计约束边,其中每5步添加回环约束以增强优化效果。代码展示了完整的边缘化流程,包括舒尔补、先验因子和FEJ(First Estimate Jacobians)方法的使用。优化的位姿结果实时输出,最终展示全部10个位姿的优化坐标。该实现代码量精简,便于理解边缘化理论的实际应用,后续还将推出真实数据的实验案例。完整代码已开源在码云平台。
2025-06-13 08:00:00
330
原创 SLAM中的非线性优化-2D图优化之边缘化(舒尔补)/先验Factor/FEJ(十二)
本文探讨了视觉惯性里程计中预积分和图优化存在的多解问题。当线性化点未固定时,系统会因状态更新而发散,类似于量子纠缠现象。为解决这一风险,需要引入先验信息来固定线性化点,确保解的唯一性。文中提出使用舒尔补操作和首次估计雅可比(FEJ)方法来规定先验信息,从而约束优化过程中状态变量的移动范围,避免系统发散。这种方法类似于限制刚体移动范围,使其仅在初始位置附近变化,最终获得稳定可靠的优化结果。
2025-06-08 13:22:48
337
原创 SLAM中的非线性优化-2D图优化之IMU预积分实战(十一)
本文介绍了三轴IMU预积分的实战应用,作者指出由于时间限制,当前代码还存在问题,基于仿真的数据仅前几帧能够收敛。该内容主要起教学示范作用,后续将持续更新完善。作者邀请读者在评论区指出问题,并对关注博客的读者表示感谢。最后简要提及将展示代码实现环节。文章简短说明了项目现状、目的和互动方式。
2025-06-01 20:57:07
194
原创 SLAM中的非线性优化-2D图优化之三轴IMU预积分(十)
上节讲完了预积分相关的传播,噪声传播,残差雅可比等的推导,事实上,优化问题的目标是估计最优状态,而预积分实际上是一种观测,但若只有预积分,一种观测,则其等价于直接积分,若要完成优化,还需要融合其它观测,本节继续考虑如下位姿图。如图所示,绿色表示两帧间的观测,蓝色表示直接当前观测,我们依然考虑两帧间的边由轮速里程计跟IMU预积分组成,当前观测由gps观测组成,轮速里程计我们采用。(1-3)位置对加速度偏置求导, 带入上一讲公式(1)并省略掉无关项。(1-0)先位置对位置求导。(1)先位置对位置求导;
2025-05-17 18:46:59
710
原创 SLAM中的非线性优化-2D图优化之三轴IMU预积分(九)
本节主要讲解了预积分在SLAM(同步定位与地图构建)中的应用,特别是如何利用SO(2)李代数进行优化。首先介绍了SO(2)的定义及其李代数so(2),包括指数映射和对数映射,这些工具用于描述二维旋转的局部扰动或增量。接着,讨论了在SLAM中如何利用这些数学工具进行优化问题、扰动模型和插值。此外,还详细介绍了预积分残差和雅可比矩阵的推导,这些在IMU应用中用于优化状态变量,如旋转、平移、线速度和IMU零偏。最后,总结了预积分过程的关键步骤,包括计算预积分观测量、噪声协方差矩阵和雅可比矩阵
2025-05-10 21:14:46
786
原创 SLAM中的非线性优化-2D图优化之三轴IMU预积分(八)
由直接积分可以看到,优化时候i时刻偏置因为在状态中,也会随之改变,如果零偏改变,预积分就要重新计算,但这样就与直接积分没有多大区别了,因此这里做写技巧性的改变,假定与积分观测是随着零偏线性变化的。仿照(2)式,并将(13)中更新后的角度带入可得,目的式要将上式变为(3)(4)(5)式后加减一系列跟delta相关的量,因此这里旋转部分需要分离delta_bwi。上式除了旋转部分与六轴IMU预积分有区别外,速度,位置均保持一致,主要看这两项对应雅可比怎么求解。先上结论,由上节中的公式(3)(4) (5)可得。
2025-05-03 21:51:06
950
原创 SLAM中的非线性优化-2D图优化之三轴IMU预积分(七)
本讲开始正式三轴imu预积分推导,由于imu预积分较为复杂,因此同样分为多个章节讲解,预积分模型按大方向分,主要为假设噪声传播阶段零偏不更新跟优化过程中零偏更新的处理过程;上式是两帧间的递推公式,也叫直接积分,仅单帧间的变换,实际上两个关键帧间起码会大于等于两帧,因此推导下通用的公式,时间用i和j时刻表示,为了把直接积分变为预积分,只需再上式两边同时乘以i时刻旋转的逆即可,记为。速度项也同样的道理,就不打公式了,唯独旋转部分不需要这么复杂,只需SE2累加即可。
2025-04-20 10:14:01
666
原创 SLAM中的非线性优化-2D图优化之三轴IMU预积分前传(六)
IMU的观测也会随着更新,而更新方法就是从i时刻积分导j时刻,对低频imu倒影响不大,实际上imu频率可达100hz,SLAM中的i和j时刻一般代表两个关键帧数据,而两帧间可能会存在上百帧imu数据,如果直接积分,则算法非常耗时,此处后续在3D图优化中,会有真实数据,可以直观感受到,而预积分则采取的是一阶近似,即i时刻更新,则j时刻直接更新掉,而不需要一帧一帧累计。由上式可知,状态是由角度表示的,而旋转矩阵正好对应着各自的角度,因此最终推导的误差项表示如下,懒得打公式了,拷贝一段,i=1, j=2.
2025-04-12 19:16:56
881
原创 SLAM中的非线性优化-2D图优化之三轴IMU预积分前传(五)
x=(x1, x2);上图中蓝色矩形为相邻两时刻分别对应的观测,下方圆圈表示相邻两时刻分别对应的状态,积分方法参考上一讲《SLAM中的非线性优化-2D图优化之三轴IMU预积分(四)》P=(p3, p4);本节来补充上一讲, 继续讲解直接积分的图优化问题该怎么设计;由于涉及两个时刻的状态,优化过程中也需要同时优化两时刻的状态;, 其中残差项分别为。
2025-04-05 21:24:44
724
原创 SLAM中的非线性优化-2D图优化之三轴IMU预积分前传(四)
本节继续2D图优化过程,在讲解三轴IMU的预积分前,先看看直接积分对优化会产生哪些不良影响,并且为了简化计算过程,主要以欧拉角推导,三轴imu输入(ax, ay, gz);并且忽略外参影响,假设所有传感器都在一个坐标系下,时间同步也已同步好。
2025-03-29 21:27:41
130
原创 SLAM中非线性优化-算法介绍(一)
从现在开始正式进入SLAM中非线性优化算法介绍,本系列博客主要以通俗易懂的语言讲解SLAM中优化算法的细节,最主要的雅可比推导,包含二维以及三维雅可比推导,
2025-03-16 10:25:01
235
2
原创 视觉融合里程计SLAM算法SE2Lam解析-论文篇
解析论文名称是:Visual-Odometric Localization and Mapping for Ground Vehicles Using SE(2)-XYZ Constraints 代码的github地址是:https://github.com/izhengfan/se2lam时隔多年,其实也没几年,决定开始写第二篇博客,选择该主题的原因是,在研究IMU预积分的时候,很多地方...
2019-11-27 17:44:12
4522
8
原创 ubuntu下realsense驱动的详细安装步骤
本博客属于个人第一篇博客内容,相关内容均为亲测,并遇坑填坑,其余未涉及的bug,请自行搜索解决。系统版本号:ubuntu14.04.3 amd64深度相机realsense1.安装relsense驱动(1)首先到github下载librealsense源码包https://github.com/IntelRealSense/librealsense(2)解压后进入该驱动文件
2017-02-08 09:15:44
3542
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人