中国剩余定理及其代码实现

初等数论学习计划

中国剩余定理

部分源自于维基百科. 后续会继续补充修改.
初等数论四大定理之一.

1.1 历史背景与特殊情形口诀

中国剩余定理,又称中国余数定理,是数论中的一个关于一元线性同余方程组的定理,说明了一元线性同余方程组有解的准则 以及求解方法。也称为孙子定理.

一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作**《孙子算经》**卷下第二十六题,叫做“物不知数”问题,原文如下:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?

即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。

《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。
宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》对“物不知数”问题做出了完整系统的解答。明朝数学家程大位在《算法统宗》中将解法编成易于上口的《孙子歌诀》[1]:
三人同行七十希,五树梅花廿一支,七子团圆正半月,除百零五便得知
这个歌诀给出了模数为 3、5、7 时候的同余方程的秦九韶解法。意思是:将除以3得到的余数乘以70,将除以5得到的余数乘以21,将除以7得到的余数乘以15,全部加起来后再减去105或者105的整数倍,得到的数就是答案(除以105得到的余数则为最小答案)。比如说在以上的物不知数问题里面,使用以上的方法计算就得到
70 × 2 + 21 × 3 + 15 × 2 = 233 = 2 × 105 + 23. 70 \times 2 + 21 \times 3 + 15 \times 2 = 233 = 2\times 105 +23. 70×2+21×3+15×2=233=2×105+23.因此按歌诀求出的结果就是23.

1.2 数学语言描述

用现代数学的语言来说明的话,中国剩余定理给出了以下的一元线性同余方程组

( S ) : { x ≡ a 1 ( m o d m 1 ) x ≡ a 2 ( m o d m 2 ) ⋮ x ≡ a n ( m o d m n ) (S) : \quad \left\{ \begin{matrix} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \vdots \qquad\qquad\qquad \\ x \equiv a_n \pmod {m_n} \end{matrix} \right. (S):xa1(modm1)xa2(modm2)xan(modmn)
有解的判定条件,并用构造法给出了在有解情况下解的具体形式

中国剩余定理说明:假设整数 m 1 , m 2 , . . . , m n m_1, m_2, ... , m_n m1,m2,...,mn其中任两数互质,则对任意的整数: a 1 , a 2 , . . . , a n a_1, a_2, ... , a_n a1,a2,...,an,方程组 ( S ) {\displaystyle (S)} (S)有解,并且通解可以用如下方式构造得到:

(i) M = m 1 × m 2 × ⋯ × m n = ∏ i = 1 n m i {\displaystyle M=m_{1}\times m_{2}\times \cdots \times m_{n}=\prod _{i=1}^{n}m_{i}} M=m1×m2××mn=i=1nmi 是整数 m 1 , m 2 , . . . , m n m_1, m_2, ... , m_n m1,m2,...,mn 的乘积,并设 M i = M / m i ,      ∀ i ∈ { 1 , 2 , ⋯   , n } {\displaystyle M_{i}=M/m_{i},\;\;\forall i \in \{1,2,\cdots ,n\}} Mi=M/mi,i{1,2,,n},即 M i {\displaystyle M_{i}} Mi是除了 m i m_i mi以外的 n − 1 n − 1 n1个整数的乘积。

(ii)

t i = M i − 1 {\displaystyle t_{i}=M_{i}^{-1}} ti=Mi1 M i {\displaystyle M_{i}} Mi m i m_i mi 的数论倒数: t i M i ≡ 1 ( m o d m i ) ,      ∀ i ∈ { 1 , 2 , ⋯   , n } . {\displaystyle t_{i}M_{i}\equiv 1{\pmod {m_{i}}},\;\;\forall i\in \{1,2,\cdots ,n\}.} tiMi1(modmi),i{1,2,,n}..

  • 数论倒数, 即模逆元也称为模倒数。

一整数 a a a对同余 n n n之模逆元是指满足以下公式的整数 a − 1 ≡ b ( m o d n ) a^{{-1}}\equiv b{\pmod {n}} a1b(modn). 也可以写成以下的式子
a b ≡ 1 ( m o d n ) . {\displaystyle ab\equiv 1{\pmod {n}}.} ab1(modn). 整数 a a a 对模数 n n n 之模逆元存在的充分必要条件是 a a a n n n 互素,

(iii)
方程组 ( S ) {\displaystyle (S)} (S)的通解形式为:
x = a 1 t 1 M 1 + a 2 t 2 M 2 + ⋯ + a n t n M n + k M = k M + ∑ i = 1 n a i t i M i , k ∈ Z . {\displaystyle x=a_{1}t_{1}M_{1}+a_{2}t_{2}M_{2}+\cdots +a_{n}t_{n}M_{n}+kM=kM+\sum _{i=1}^{n}a_{i}t_{i}M_{i},\quad k\in \mathbb {Z} .} x=a1t1M1+a2t2M2++antnMn+kM=kM+i=1naitiMi,kZ. 在模 M {\displaystyle M} M的意义下,方程组 ( S ) {\displaystyle (S)} (S) 只有一个解: x = ∑ i = 1 n a i t i M i . {\displaystyle x=\sum _{i=1}^{n}a_{i}t_{i}M_{i}.} x=i=1naitiMi..

例子
使用中国剩余定理来求解上面的“物不知数”问题,便可以理解《孙子歌诀》中的数字含义。这里的线性同余方程组是:

( S ) : { x ≡ 2 ( m o d 3 ) x ≡ 3 ( m o d 5 ) x ≡ 2 ( m o d 7 ) {\displaystyle (S):\quad \left\{{\begin{matrix}x\equiv 2{\pmod {3}}\\x\equiv 3{\pmod {5}}\\x\equiv 2{\pmod {7}}\end{matrix}}\right.} (S):x2(mod3)x3(mod5)x2(mod7)
三个模数 m 1 = 3 , m 2 = 5 , m 3 = 7 m_1=3, m_2=5, m_3=7 m1=3,m2=5,m3=7 的乘积是 M = 105 M=105 M=105,对应的 M 1 = 35 , M 2 = 21 , M 3 = 15 M_1=35, M_2=21, M_3=15 M1=35,M2=21,M3=15. 而可以计算出相应的数论倒数: t 1 = 2 , t 2 = 1 , t 3 = 1 t_1=2, t_2=1, t_3=1 t1=2,t2=1,t3=1. 所以《孙子歌诀》中的 70、21 和 15 其实是这个“物不知数”问题的基础解:

70 = 2 × 35 ≡ { 1 ( m o d 3 ) 0 ( m o d 5 ) 0 ( m o d 7 ) , 21 = 1 × 21 ≡ { 0 ( m o d 3 ) 1 ( m o d 5 ) 0 ( m o d 7 ) , 15 = 1 × 15 ≡ { 0 ( m o d 3 ) 0 ( m o d 5 ) 1 ( m o d 7 ) , {\displaystyle 70=2\times 35\equiv \left\{{\begin{matrix}1{\pmod {3}}\\0{\pmod {5}}\\0{\pmod {7}}\end{matrix}},\right.21=1\times 21\equiv \left\{{\begin{matrix}0{\pmod {3}}\\1{\pmod {5}}\\0{\pmod {7}}\end{matrix}},\right.15=1\times 15\equiv \left\{{\begin{matrix}0{\pmod {3}}\\0{\pmod {5}}\\1{\pmod {7}}\end{matrix}},\right.} 70=2×351(mod3)0(mod5)0(mod7),21=1×210(mod3)1(mod5)0(mod7),15=1×150(mod3)0(mod5)1(mod7),
而将原方程组中的余数相应地乘到这三个基础解上,再加起来,其和就是原方程组的解:

2 × 70 + 3 × 21 + 2 × 15 ≡ { 2 × 1 + 3 × 0 + 2 × 0 ≡ 2 ( m o d 3 ) 2 × 0 + 3 × 1 + 2 × 0 ≡ 3 ( m o d 5 ) 2 × 0 + 3 × 0 + 2 × 1 ≡ 2 ( m o d 7 ) , {\displaystyle 2\times 70+3\times 21+2\times 15\equiv \left\{{\begin{matrix}2\times 1+3\times 0+2\times 0\equiv 2{\pmod {3}}\\2\times 0+3\times 1+2\times 0\equiv 3{\pmod {5}}\\2\times 0+3\times 0+2\times 1\equiv 2{\pmod {7}}\end{matrix}},\right.} 2×70+3×21+2×152×1+3×0+2×02(mod3)2×0+3×1+2×03(mod5)2×0+3×0+2×12(mod7),
这个和是 233,实际上原方程组的通解公式为:

x = 233 + k × 105 ,    k ∈ Z {\displaystyle x=233+k\times 105,\;k\in \mathbb {Z} } x=233+k×105,kZ
《孙子算经》中实际上给出了最小正整数解,也就是 k = − 2 时 的 解 : x = 23 . {\displaystyle k=-2} 时的解:{\displaystyle x=23}. k=2x=23.

1.3 程序化 计算机辅助求解

观察中国剩余定理的求解很程式化,自然可以用编程语言实现, 可以试试. 这里提供Python3代码.

from functools import reduce
def chinese_remainder(n, a):
    sum = 0
    prod = reduce(lambda a, b: a*b, n)
    for n_i, a_i in zip(n, a):
        p = prod // n_i
        sum += a_i * mul_inv(p, n_i) * p
    return sum % prod`
 
 
 
def mul_inv(a, b):
    b0 = b
    x0, x1 = 0, 1
    if b == 1: return 1
    while a > 1:
        q = a // b
        a, b = b, a%b
        x0, x1 = x1 - q * x0, x0
    if x1 < 0: x1 += b0
    return x1

我们带入孙子算经的例子进去:


if __name__ == '__main__':
   n = [3, 5, 7]
   a = [2, 3, 2]
   print(chinese_remainder(n, a))

运行结果为23.

Mathematica 里的ChineseRemainder函数可以方便使用. 比如针对孙子歌诀的习题, 我们可以如下操作,得到最小正整数解23.
在这里插入图片描述

如果想找大于23的最小正整数解, 可以增加一个参数.
在这里插入图片描述

如果我们想找小于2020的所有满足要求的正整数解:(下面截图不全)

在这里插入图片描述

稍加改造,代码将会清楚一些:符合要求的解的个数
在这里插入图片描述
前10个正整数数解(从小到大).
在这里插入图片描述
代码文本:

#1
l = 0;
Reap[While[l < 2020, l = ChineseRemainder[{2, 3, 2}, {3, 5, 7}, l]; 
   If[l < 2020, Sow[l]]; l++]][[2, 1]]
#2   
s = 0;
Do[Print[s = ChineseRemainder[{2, 3, 2}, {3, 5, 7}, s]]; 
 s = s + 1, 10]

更多有趣的可以参考 https://zhuanlan.zhihu.com/p/35727703

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
#include #include using namespace std; typedef int LL; typedef pair PLL; LL inv(LL t, LL p) {//求t关于p的逆元 if (t >= p) t = t%p; return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组 LL x = 0, m = 1; for (int i = 0; i < n; i++) { LL a = A[i] * m, b = B[i] - A[i] * x, d =gcd(M[i], a); if (b % d != 0) return PLL(0, -1);//答案不存在,返回-1 LL t = b / d * inv(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } x = (x % m + m) % m; return PLL(x, m);//返回的x就是答案,m是最后的lcm值 } int main() { int n; scanf_s("%d", &n); LL a[2017], b[2017], m[2017]; for (int i = 0; i<n; i++) { scanf_s("%d%d%d", &a[i], &b[i], &m[i]); } PLL pa = linear(a, b, m, n); printf("%lld\n", pa.first); } 设计思路: 有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 解这题,先构造一个答案 5*7*inv(5*7, 3) % 3 = 1 3*7*inv(3*7, 5) % 5 = 1 3*5*inv(3*5, 7) % 7 = 1 然后两边同乘你需要的数 2 * 5*7*inv(5*7, 3) % 3 = 2 3 * 3*7*inv(3*7, 5) % 5 = 3 2 * 3*5*inv(3*5, 7) % 7 = 2 令 a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7) 那么 a % 3 = 2 b % 5 = 3 c % 7 = 2 其实答案就是a+b+c 因为 a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数 所以 (a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2 (a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3 (a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2 答案a+b+c完全满足题意 但是答案,不只一个,有无穷个,每相隔105就是一个答案(105 = 3 * 5 * 7) a=2*5*7*2=140 b=3*3*7*1=63 c=2*3*5*1=30 140+63+30=233 2335 = 23 如果题目问你最小的那个答案,那就是23了。 当 1*x=2(%3) 1*x=3(%5) 1*x=2(%7) 输入: 3 1 2 3 1 3 5 1 2 7 输出: 23

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值