从本章开始,就会进入数据治理的五大维度的讲解,即:组织、政策、工具、业务、数据。本章是第一章:组织。
一个组织的建立是为了完成一个共同的目标,而数据治理组织的建立就是为了更好的完成数据治理的目标。(至于说数据治理目标定义是什么,可以看【数据治理的目标】这一章)。在为了达成这个目标的过程中,与之相匹配的组织,能够更好的协调资源、制定决策、执行决策等等。
或者说一个好的组织,说能够更加顺畅的进行权力的分配。
1、组织即权力
这个观点其实是从历史解说类的视频中学习到的。每个开国皇帝,都需要进行权力的均衡,而这种权力的均衡,就体现在组织设置上,人员的封赏上,或者说是体现人事安排上。
在数据治理过程中,这种组织设置的必要性,或者说这个权力分配的必要性更加明显。
首先,数据治理一定是一个跨组织的事情,有数据治理的直接相关方:发出治理需求的一方、被治理影响的一方。又有数据治理的间接相关方:工具提供方,甚至安全部门、法务部门。(详见【数据治理启动的契机】中明确相关方部分)。而凡是涉及到跨组织,就一定会有命令传递、执行不到位的情况。因为跨组织了,各个组织的目标都不一致,没有一致的目标,行动一定不一致。
这个时候,就需要有一个在现有组织层级之上,或者说跨组织的虚拟组织,或者说委员会,来达成一个统一的目标。进而推进数据治理这件事情。
其次,就是数据治理本身在现阶段大部分时候还并不是雪中送炭的事情,更多的是一种锦上添花的行为,甚至于是一个添堵的行为。这种时候更需要一个组织来推动,确保资源、决策、规范的统一。
2、常见的三种运营模式
这种组织结构模式在《DAMA数据管理知识体系》中有单独的一章介绍。在DAMA中有:分散运营模式、网络运营模式、集中运营模式、混合运营模式、联邦运营模式。但是在国内似乎最常提到的是:集中式、分散式、联邦式,这三种模式。下面也是主要对这三种形式进行一个说明。
- 模式一:集中式 形式: 所有工作都由数据管理组织掌控。参与数据治理和数据管理的人员直接向负责治理、管理职责、元数据管理、数据质量管理、主数据和参考数据管理、数据架构、业务分