题目:
有2n个棋子(n≥4)排成一行,开始位置为白子全部在左边,黑子全部在右边,如下图为n=5的情形:
○○○○○●●●●●
移动棋子的规则是:每次必须同时移动相邻的两个棋子,颜色不限,可以左移也可以右移到空位上去,但不能调换两个棋子的左右位置。每次移动必须跳过若干个棋子(不能平移),要求最后能移成黑白相间的一行棋子。如n=5时,成为:
○●○●○●○●○●
任务:编程打印出移动过程。
解析:
同志们可能看不出来
这道题为什么是分治
下面我来解释一下:
我们先从n=4开始试试看,初始时:
○○○○●●●● —— {—表示空位}
第1步:○○○——●●●○●
第2步:○○○●○●●——●
第3步:○——●○●●○○●
第4步:○●○●○●——○●
第5步:○●○●○●○●——
如果n=5呢?我们继续尝试,希望看出一些规律,初始时:
○○○○○●●●●●
第1步:○○○○——●●●●○●
第2步:○○○○●●●●——○●
这样,n=5的问题又分解成了n=4的情况,
下面只要再做一下n=4的5个步骤就行了。
同理,
n=6的情况又可以分解成n=5的情况,
所以,
对于一个规模为n的问题,
我们很容易地就把他分治成了规模为n-1的相同类型子问题。
数据结构如下:数组c[1…max]用来作为棋子移动的场所,
初始时,
c[1]~c[n]存放白子(用字符o表示),
c[n+1]~c[2n]存放黑子(用字符*表示),
c[2n+1]~c[2n+2]为空位置(用字符—表示) 。
最后结果在c[3]~c[2n+2]中。
所以
同志们可发现了
这道题
其实就是典型的
递归思想
只要记下n=4的话就可以了
下面附上代码:
#include<bits/stdc++.h>
#include<iostream>
#include<cstdlib>
#include<cstdio>
using namespace std;
int main()
{
freopen("hb.in","r",stdin);
freopen("hb.out","w",stdout);
char a[1000];
int n,sum=0,temp,d;
cin>>n;
d=n;
for(int i=1; i<=n; i++)
a[i]='o';
for(int i=n+1; i<=n*2; i++)
a[i]='*';
a[n*2+1]=a[n*2+2]='-';
cout<<"step "<<sum<<":";
for(int i=1; i<=d*2+2; i++)
cout<<a[i];
cout<<endl;
sum++;
while(n>=4)
{
if(n==4)
{
temp=a[4];
a[4]=a[9];
a[9]=temp;
temp=a[5];
a[5]=a[10];
a[10]=temp;
cout<<"step "<<sum<<":";
for(int i=1; i<=d*2+2; i++)
cout<<a[i];
cout<<endl;
sum++;
temp=a[4];
a[4]=a[8];
a[8]=temp;
temp=a[5];
a[5]=a[9];
a[9]=temp;
cout<<"step "<<sum<<":";
for(int i=1; i<=d*2+2; i++)
cout<<a[i];
cout<<endl;
sum++;
temp=a[2];
a[2]=a[8];
a[8]=temp;
temp=a[3];
a[3]=a[9];
a[9]=temp;
cout<<"step "<<sum<<":";
for(int i=1; i<=d*2+2; i++)
cout<<a[i];
cout<<endl;
sum++;
temp=a[2];
a[2]=a[7];
a[7]=temp;
temp=a[3];
a[3]=a[8];
a[8]=temp;
cout<<"step "<<sum<<":";
for(int i=1; i<=d*2+2; i++)
cout<<a[i];
cout<<endl;
sum++;
temp=a[1];
a[1]=a[7];
a[7]=temp;
temp=a[2];
a[2]=a[8];
a[8]=temp;
cout<<"step "<<sum<<":";
for(int i=1; i<=d*2+2; i++)
cout<<a[i];
cout<<endl;
break;
}
else
{
temp=a[n];
a[n]=a[n*2+1];
a[n*2+1]=temp;
temp=a[n+1];
a[n+1]=a[n*2+2];
a[n*2+2]=temp;
cout<<"step "<<sum<<":";
for(int i=1; i<=d*2+2; i++)
cout<<a[i];
cout<<endl;
sum++;
temp=a[n];
a[n]=a[n*2-1];
a[n*2-1]=temp;
temp=a[n+1];
a[n+1]=a[n*2];
a[n*2]=temp;
cout<<"step "<<sum<<":";
for(int i=1; i<=d*2+2; i++)
cout<<a[i];
cout<<endl;
sum++;
n--;
}
}
fclose(stdin);
fclose(stdout);
return 0;
}
拜拜!