A. Line Trip
分析:
有一条路,可以用一条数线来表示。你位于数线上的点 0 ,你想从点 0 到点 x,再回到点 0 。
你乘汽车旅行,每行驶 1 个单位的距离要花费 1 升汽油。当您从点 00出发时,汽车已加满油(油箱中的油量已达到最大值)。
在 a1,a2,…,an点有 n 个加油站。到达加油站后,为汽车加满油。注意只能在加油站加油, 0 和 x点没有加油站。
你必须计算出你的汽车油箱的最小容积(以升为单位),这样你才能从点 0 行驶到点 x 并返回到点 0。
贪心找到每个加油站中间最长的间隔即可,当然也可以二分:
code1 贪心
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define _CRT_SECURE_NO_WARNINGS
using namespace std;
#define int long long
typedef long long ll;
#define PII pair<int,int>
#define endl '\n'
#define x first
#define y second
#define all(n) (n).begin()+1,(n).end()
const int N = 2e5 + 5;
const int mod = 998244353;
void prvec(vector<int> a) {
for (auto i : a) cout << i << '|';
cout << endl;
}
ostream& operator<<(ostream& ou, vector<int> a) {
for (int i = 1; i < a.size(); i++) ou << a[i] << ' ';
return ou;
}
istream& operator>>(istream& in, vector<int>& a) {
for (int i = 1; i < a.size(); i++) in >> a[i];
return in;
}
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
}
int a[55];
void solve()
{
int n, x; cin >> n >> x;
for (int i = 1; i <= n; i++) cin >> a[i];
int mx = 0;
for (int i = 1; i <= n; i++)
{
mx = max(mx, a[i] - a[i - 1]);
}
mx = max(mx, (x - a[n]) * 2);
cout << mx << '\n';
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int _ = 1; cin >> _;
while (_--) solve();
}
code2 二分
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define _CRT_SECURE_NO_WARNINGS
using namespace std;
#define int long long
typedef long long ll;
#define PII pair<int,int>
#define endl '\n'
#define x first
#define y second
#define all(n) (n).begin(),(n).end()
const int N = 2e5 + 5;
const int mod = 998244353;
void prvec(vector<int> a) {
for (auto i : a) cout << i << '|';
cout << endl;
}
ostream& operator<<(ostream& ou, vector<int> a) {
for (int i = 1; i < a.size(); i++) ou << a[i] << ' ';
return ou;
}
istream& operator>>(istream& in, vector<int>& a) {
for (int i = 1; i < a.size(); i++) in >> a[i];
return in;
}
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
}
void solve()
{
int n, x; cin >> n >> x;
int l = 0, r = 1e9;
vector<int> a(n + 1);
cin >> a;
auto check=[&](int p) {
int now = p;
for (int i = 1; i <= n; i++) {
if (now < a[i] - a[i-1]) return 0;
now = p;
}
if (now < (x - a[n]) * 2) return 0;
for (int i = n - 1; i >= 1; i --) {
if (now < a[i+1]-a[i]) return 0;
now = p;
}
return 1;
};
while (l < r)
{
int mid = (l + r) >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
cout << l << endl;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int _ = 1; cin >> _;
while (_--) solve();
}
B.Chip and Ribbon
分析:
题意转换过来就是给我们一个长度为n的数组a,每次可以选择一个区间减1,但第一次操作的起点为1且不计,问需要至少多少次操作(不计第一次操作)可以使得数组a的所有数都变为0,这道题其实可以从差分的方向想,我们每一次操作相当于把差分数组的一个数加一,一个数减一,那么我们直接分别统计差分数组中正负数之和,然后取max即可,因为消掉正的的时候可以把负的一起消灭了,这时差分数组的内部只剩下正的或者负的,那么我们只需要对每一个位置取+1/-1 ,另外一个位置取在差分数组外面(相当于原数组这个位置后面的所有数都+1/-1),所以差分数组的正负数之和取max就是最小操作次数,但第一次操作不计,所以应当减1。
code
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define _CRT_SECURE_NO_WARNINGS
using namespace std;
#define int long long
typedef long long ll;
#define PII pair<int,int>
#define endl '\n'
#define x first
#define y second
#define all(n) (n).begin(),(n).end()
const int N = 2e5 + 5;
const int mod = 998244353;
void prvec(vector<int> a) {
for (auto i : a) cout << i << '|';
cout << endl;
}
ostream& operator<<(ostream& ou, vector<int> a) {
for (int i = 1; i < a.size(); i++) ou << a[i] << ' ';
return ou;
}
istream& operator>>(istream& in, vector<int>& a) {
for (int i = 1; i < a.size(); i++) in >> a[i];
return in;
}
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
}
void solve()
{
int n; cin >> n;
vector<int> a(n + 1);
cin >> a;
vector<int> cf(n + 1);
for (int i = 1; i <= n; i++) cf[i] = a[i] - a[i - 1];
int p = 0, q = 0;
for (int i = 1; i <= n; i++) if (cf[i] > 0) p += cf[i]; else q += cf[i];
cout << max(p, -q) - 1 << endl;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int _ = 1; cin >> _;
while (_--) solve();
}
C. Add, Divide and Floor
分析:
因为每一次操作是对整个数组产生影响,因此我们无论选择什么数对原数组的影响其实都可以转换为0/1,因为如果我们选择的是2,就相当于选择0,并在数组的所有元素上都加上1,这对数组整体的相等性是没有贡献的,那么问题就简化为我们如何选择0/1,如果一个数是偶数,我们选择0和1是有区别的,选择1会比选择0大1,而对于偶数我们选择0/1实际上是一样的,然后我们发现当一对数第一次相等过后,无论选择0,1它们都会一直相等,so,我们只需要考虑数组中最大的数和最小的数相等所需要的次数,根据前面奇偶性的描述,我们很容易就知道只有小的是奇数,大的是偶数我们才选择1,这样更优,因为奇数选1是会比偶数大1 的这样与大数相等的速率最快,因此我们模拟一遍并记录答案即可。
code
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define _CRT_SECURE_NO_WARNINGS
using namespace std;
#define int long long
typedef long long ll;
#define PII pair<int,int>
#define endl '\n'
#define x first
#define y second
#define all(n) (n).begin()+1,(n).end()
const int N = 2e5 + 5;
const int mod = 998244353;
void prvec(vector<int> a) {
for (auto i : a) cout << i << '|';
cout << endl;
}
ostream& operator<<(ostream& ou, vector<int> a) {
for (int i = 1; i < a.size(); i++) ou << a[i] << ' ';
return ou;
}
istream& operator>>(istream& in, vector<int>& a) {
for (int i = 1; i < a.size(); i++) in >> a[i];
return in;
}
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
}
void solve()
{
int n; cin >> n;
vector<int> a(n + 1);
cin >> a;
if (n == 1) cout << 0 << endl;
else {
vector<int> ans;
int mx =*max_element(all(a)) ,mn = *min_element(all(a));
auto get = [&] {
if (mx - mn == 1) return (mn & 1);
if (mn % 2 == 1 && mx % 2 == 0) return 1ll;
return 0ll;
};
while (mx!=mn)
{
int d = get();
mx = (mx + d) / 2;
mn = (mn + d) / 2;
ans.push_back(d);
}
cout << ans.size() << endl;
if (ans.size() <= n) for (int i : ans) cout << i << ' ';
cout << endl;
}
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int _ = 1; cin >> _;
while (_--) solve();
}
D. Yet Another Monster Fight
分析:
对于每个位置我们只考虑最坏的情况即可,因此我们只需要统计一下前后缀在每个位置的最坏情况下更新一下答案,取min即可,见代码
code
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define _CRT_SECURE_NO_WARNINGS
using namespace std;
#define int long long
typedef long long ll;
#define PII pair<int,int>
#define endl '\n'
#define x first
#define y second
#define all(n) (n).begin()+1,(n).end()
const int N = 2e5 + 5;
const int mod = 998244353;
void prvec(vector<int> a) {
for (auto i : a) cout << i << '|';
cout << endl;
}
ostream& operator<<(ostream& ou, vector<int> a) {
for (int i = 1; i < a.size(); i++) ou << a[i] << ' ';
return ou;
}
istream& operator>>(istream& in, vector<int>& a) {
for (int i = 1; i < a.size(); i++) in >> a[i];
return in;
}
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
}
void solve()
{
int n;
cin >> n;
vector<int> a(n + 1), mx1(n + 1), mx2(n + 1);
for (int i = 1; i <= n; i++) {
cin >> a[i];
mx1[i] = a[i] - i;
mx2[i] = a[i] + i;
}
for (int i = 2; i <= n; i++) mx1[i] = max(mx1[i], mx1[i - 1]);
for (int i = n - 1; i >= 1; i--) mx2[i] = max(mx2[i], mx2[i + 1]);
int ans = 2e9;
for (int i = 1; i <= n; i++) {
int t = a[i];
if (i - 1 >= 1) {
t = max(t, mx1[i - 1] + i + n - i);
}
if (i + 1 <= n) {
t = max(t, mx2[i + 1] - i + i - 1);
}
ans = min(ans, t);
}
cout << ans << endl;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int _ = 1; //cin >> _;
while (_--) solve();
}