Educational Codeforces Round 158 (Rated for Div. 2)A-D

A. Line Trip

分析:

有一条路,可以用一条数线来表示。你位于数线上的点 0 ,你想从点 0 到点 x,再回到点 0 。

你乘汽车旅行,每行驶 1 个单位的距离要花费 1 升汽油。当您从点 00出发时,汽车已加满油(油箱中的油量已达到最大值)。

在 a1,a2,…,an点有 n 个加油站。到达加油站后,为汽车加满油。注意只能在加油站加油, 0 和 x点没有加油站

你必须计算出你的汽车油箱的最小容积(以升为单位),这样你才能从点 0 行驶到点 x 并返回到点 0。

贪心找到每个加油站中间最长的间隔即可,当然也可以二分:

code1 贪心

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define _CRT_SECURE_NO_WARNINGS
using namespace std;
#define int long long
typedef long long ll;
#define PII pair<int,int>
#define endl '\n'
#define x first
#define y second
#define all(n) (n).begin()+1,(n).end()
const int N = 2e5 + 5;
const int mod = 998244353;
void prvec(vector<int> a) {
    for (auto i : a) cout << i << '|';
    cout << endl;
}
ostream& operator<<(ostream& ou, vector<int> a) {
    for (int i = 1; i < a.size(); i++) ou << a[i] << ' ';
    return ou;
}
istream& operator>>(istream& in, vector<int>& a) {
    for (int i = 1; i < a.size(); i++) in >> a[i];
    return in;
}
int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}
int a[55];
void solve()
{
    int n, x; cin >> n >> x;
    for (int i = 1; i <= n; i++) cin >> a[i];
    int mx = 0;
    for (int i = 1; i <= n; i++)
    {
        mx = max(mx, a[i] - a[i - 1]);
    }
    mx = max(mx, (x - a[n]) * 2);
    cout << mx << '\n';
}
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);
    int _ = 1; cin >> _;
    while (_--) solve();
}

code2 二分

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define _CRT_SECURE_NO_WARNINGS
using namespace std;
#define int long long
typedef long long ll;
#define PII pair<int,int>
#define endl '\n'
#define x first
#define y second
#define all(n) (n).begin(),(n).end()
const int N = 2e5 + 5;
const int mod = 998244353;
void prvec(vector<int> a) {
    for (auto i : a) cout << i << '|';
    cout << endl;
}
ostream& operator<<(ostream& ou, vector<int> a) {
    for (int i = 1; i < a.size(); i++) ou << a[i] << ' ';
    return ou;
}
istream& operator>>(istream& in, vector<int>& a) {
    for (int i = 1; i < a.size(); i++) in >> a[i];
    return in;
}
int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}
void solve()
{
    int n, x; cin >> n >> x;
    int l = 0, r = 1e9;
    vector<int> a(n + 1);
    cin >> a;
    auto check=[&](int p) {
        int now = p;
        for (int i = 1; i <= n; i++) {
            if (now < a[i] - a[i-1]) return 0;
            now = p;
        }
        if (now < (x - a[n]) * 2) return 0;
        for (int i = n - 1; i >= 1; i --) {
            if (now < a[i+1]-a[i]) return 0;
            now = p;
        }
        return 1;
    };
    while (l < r)
    {
        int mid = (l + r) >> 1;
        if (check(mid)) r = mid;
        else l = mid + 1;
    }
    cout << l << endl;
}
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);
    int _ = 1; cin >> _;
    while (_--) solve();
}

B.Chip and Ribbon

分析:

题意转换过来就是给我们一个长度为n的数组a,每次可以选择一个区间减1,但第一次操作的起点为1且不计,问需要至少多少次操作(不计第一次操作)可以使得数组a的所有数都变为0,这道题其实可以从差分的方向想,我们每一次操作相当于把差分数组的一个数加一,一个数减一,那么我们直接分别统计差分数组中正负数之和,然后取max即可,因为消掉正的的时候可以把负的一起消灭了,这时差分数组的内部只剩下正的或者负的,那么我们只需要对每一个位置取+1/-1 ,另外一个位置取在差分数组外面(相当于原数组这个位置后面的所有数都+1/-1),所以差分数组的正负数之和取max就是最小操作次数,但第一次操作不计,所以应当减1。

code

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define _CRT_SECURE_NO_WARNINGS
using namespace std;
#define int long long
typedef long long ll;
#define PII pair<int,int>
#define endl '\n'
#define x first
#define y second
#define all(n) (n).begin(),(n).end()
const int N = 2e5 + 5;
const int mod = 998244353;
void prvec(vector<int> a) {
    for (auto i : a) cout << i << '|';
    cout << endl;
}
ostream& operator<<(ostream& ou, vector<int> a) {
    for (int i = 1; i < a.size(); i++) ou << a[i] << ' ';
    return ou;
}
istream& operator>>(istream& in, vector<int>& a) {
    for (int i = 1; i < a.size(); i++) in >> a[i];
    return in;
}
int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}
void solve()
{
    int n; cin >> n;
    vector<int> a(n + 1);
    cin >> a;
    vector<int> cf(n + 1);
    for (int i = 1; i <= n; i++) cf[i] = a[i] - a[i - 1];
    int p = 0, q = 0;
    for (int i = 1; i <= n; i++) if (cf[i] > 0) p += cf[i]; else q += cf[i];
    cout << max(p, -q) - 1 << endl; 
}
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);
    int _ = 1; cin >> _;
    while (_--) solve();
}

C. Add, Divide and Floor

分析:

因为每一次操作是对整个数组产生影响,因此我们无论选择什么数对原数组的影响其实都可以转换为0/1,因为如果我们选择的是2,就相当于选择0,并在数组的所有元素上都加上1,这对数组整体的相等性是没有贡献的,那么问题就简化为我们如何选择0/1,如果一个数是偶数,我们选择0和1是有区别的,选择1会比选择0大1,而对于偶数我们选择0/1实际上是一样的,然后我们发现当一对数第一次相等过后,无论选择0,1它们都会一直相等,so,我们只需要考虑数组中最大的数和最小的数相等所需要的次数,根据前面奇偶性的描述,我们很容易就知道只有小的是奇数,大的是偶数我们才选择1,这样更优,因为奇数选1是会比偶数大1 的这样与大数相等的速率最快,因此我们模拟一遍并记录答案即可。

code

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define _CRT_SECURE_NO_WARNINGS
using namespace std;
#define int long long
typedef long long ll;
#define PII pair<int,int>
#define endl '\n'
#define x first
#define y second
#define all(n) (n).begin()+1,(n).end()
const int N = 2e5 + 5;
const int mod = 998244353;
void prvec(vector<int> a) {
    for (auto i : a) cout << i << '|';
    cout << endl;
}
ostream& operator<<(ostream& ou, vector<int> a) {
    for (int i = 1; i < a.size(); i++) ou << a[i] << ' ';
    return ou;
}
istream& operator>>(istream& in, vector<int>& a) {
    for (int i = 1; i < a.size(); i++) in >> a[i];
    return in;
}
int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}
void solve()
{
    int n; cin >> n;
    vector<int> a(n + 1);
    cin >> a;
    if (n == 1) cout << 0 << endl;
    else {
        vector<int> ans;
        int mx =*max_element(all(a)) ,mn = *min_element(all(a));
        auto get = [&] {
            if (mx - mn == 1) return (mn & 1);
            if (mn % 2 == 1 && mx % 2 == 0) return 1ll;
            return 0ll;
        };
        while (mx!=mn)
        {
            int d = get();
            mx = (mx + d) / 2;
            mn = (mn + d) / 2;
            ans.push_back(d);
        }
        cout << ans.size() << endl;
        if (ans.size() <= n) for (int i : ans) cout << i << ' ';
        cout << endl;
    }
 
}
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);
    int _ = 1; cin >> _;
    while (_--) solve();
}

D. Yet Another Monster Fight

分析:

对于每个位置我们只考虑最坏的情况即可,因此我们只需要统计一下前后缀在每个位置的最坏情况下更新一下答案,取min即可,见代码

code

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define _CRT_SECURE_NO_WARNINGS
using namespace std;
#define int long long
typedef long long ll;
#define PII pair<int,int>
#define endl '\n'
#define x first
#define y second
#define all(n) (n).begin()+1,(n).end()
const int N = 2e5 + 5;
const int mod = 998244353;
void prvec(vector<int> a) {
    for (auto i : a) cout << i << '|';
    cout << endl;
}
ostream& operator<<(ostream& ou, vector<int> a) {
    for (int i = 1; i < a.size(); i++) ou << a[i] << ' ';
    return ou;
}
istream& operator>>(istream& in, vector<int>& a) {
    for (int i = 1; i < a.size(); i++) in >> a[i];
    return in;
}
int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}
void solve()
{
    int n;
    cin >> n;
    vector<int> a(n + 1), mx1(n + 1), mx2(n + 1);
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        mx1[i] = a[i] - i;
        mx2[i] = a[i] + i;
    }
    for (int i = 2; i <= n; i++) mx1[i] = max(mx1[i], mx1[i - 1]);
    for (int i = n - 1; i >= 1; i--) mx2[i] = max(mx2[i], mx2[i + 1]);
    int ans = 2e9;
    for (int i = 1; i <= n; i++) {
        int t = a[i];
        if (i - 1 >= 1) {
            t = max(t, mx1[i - 1] + i + n - i);
        }
        if (i + 1 <= n) {
            t = max(t, mx2[i + 1] - i + i - 1);
        }
        ans = min(ans, t);
    }
    cout << ans << endl;
}
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);
    int _ = 1; //cin >> _;
    while (_--) solve();
}

"educational codeforces round 103 (rated for div. 2)"是一个Codeforces平台上的教育性比赛,专为2级选手设计评级。以下是有关该比赛的回答。 "educational codeforces round 103 (rated for div. 2)"是一场Codeforces平台上的教育性比赛。Codeforces是一个为程序员提供竞赛和评级的在线平台。这场比赛是专为2级选手设计的,这意味着它适合那些在算法和数据结构方面已经积累了一定经验的选手参与。 与其他Codeforces比赛一样,这场比赛将由多个问题组成,选手需要根据给定的问题描述和测试用例,编写程序来解决这些问题。比赛的时限通常有两到三个小时,选手需要在规定的时间内提交他们的解答。他们的程序将在Codeforces的在线评测系统上运行,并根据程序的正确性和效率进行评分。 该比赛被称为"educational",意味着比赛的目的是教育性的,而不是针对专业的竞争性。这种教育性比赛为选手提供了一个学习和提高他们编程技能的机会。即使选手没有在比赛中获得很高的排名,他们也可以从其他选手的解决方案中学习,并通过参与讨论获得更多的知识。 参加"educational codeforces round 103 (rated for div. 2)"对于2级选手来说是很有意义的。他们可以通过解决难度适中的问题来测试和巩固他们的算法和编程技巧。另外,这种比赛对于提高解决问题能力,锻炼思维和提高团队合作能力也是非常有帮助的。 总的来说,"educational codeforces round 103 (rated for div. 2)"是一场为2级选手设计的教育性比赛,旨在提高他们的编程技能和算法能力。参与这样的比赛可以为选手提供学习和进步的机会,同时也促进了编程社区的交流与合作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值