卡特兰数

一、Catalan数的定义

  令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0)  (n>=2)

  该递推关系的解为:h(n) = C(2n,n)/(n+1),n=0,1,2,3,... (其中C(2n,n)表示2n个物品中取n个的组合数)或者是

   C(2n,n)- C(2n,n-1)

二、问题描述
  12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种?

  问题分析:
  我们先把这12个人从低到高排列,然后,选择6个人排在第一排,那么剩下的6个肯定是在第二排.
  用0表示对应的人在第一排,用1表示对应的人在第二排,那么含有6个0,6个1的序列,就对应一种方案.
  比如000000111111就对应着
  第一排:0 1 2 3 4 5
  第二排:6 7 8 9 10 11
  010101010101就对应着
  第一排:0 2 4 6 8 10
  第二排:1 3 5 7 9 11
  问题转换为,这样的满足条件的01序列有多少个。

  观察规律我们发现1的出现前边必须有一个相应的0对应,所以从左到右的所有序列中0的个数要一直大于1的个数。那这种数列有多少种排列方式呢?

  那么我们从左往右扫描,第一次出现1的个数等于0的个数是第k位,那么在此之前,0的个数是大于1的个数的。在此之后,0的个数也是大于1的个数的。所以第k位0和1的个数第一次相等的排列有他们这两部分的个数相称的结果。那么所有的k有多少种,则把它们相加起来,就是最后的排列数。这是一个递归的问题。

  即   h(n)=h(0)×h(n-1)+h(1)*h(n-2)+...+h(n-1)*h(0)

  如果把0看成入栈操作,1看成出栈操作,就是说给定6个元素,合法的入栈出栈序列有多少个。

1.饭后,姐姐洗碗,妹妹把姐姐洗过的碗一个一个地放进碗橱摞成一摞。一共有n个不同的碗,洗前也是摞成一摞的,也许因为小妹贪玩而使碗拿进碗橱不及时,姐姐则把洗过的碗摞在旁边,问:小妹摞起的碗有多少种可能的方式?

2.给定n个数,有多少种出栈序列?

3.一个有n个1和n个-1组成的字串,且前k个数的和均不小于0,那这种字串的总数为多少?

 

这三个问题具有相同的结构,三个问题是可以互相转化。将姐姐放碗看做入栈操作,将妹妹放碗看做出栈操作。则问题一变为问题二。将入栈操作记为1,出栈记为-1,问题2变为问题3。

问题的答案是一个著名的数列,卡特兰数。该问题的代数解法比较抽象,而运用到几何上,用图片来描述,却有让人恍然大悟的感觉。

 

    事实上,可以认为问题是,任意两种操作,要求每种操作的总次数一样,且进行第k次操作2前必须先进行至少k次操作1。我们假设一个人在原点,操作1是此人沿右上角45°走一个单位(一个单位设为根号2,这样他第一次进行操作1就刚好走到(1,1)点),操作2是此人沿右下角45°走一个单位。第k次操作2前必须先进行至少k次操作1,就是说明所走出来的折线不能跨越x轴走到y=-1这条线上!在进行n次操作1和n此操作2后,此人必将到到达(2n,0)!若无跨越x轴的限制,折线的种数将为C(2n,n),即在2n次操作中选出n次作为操作1的方法数。

折线法

现在只要减去跨越了x轴的情况数。对于任意跨越x轴的情况,必有将与y=-1相交。找出第一个与y=-1相交的点k,将k点以右的折线根据y=-1对称(即操作1与操作2互换了)。可以发现终点最终都会从(2n,0)对称到(2n,-2)。由于对称总是能进行的,且是可逆的。我们可以得出所有跨越了x轴的折线总数是与从(0,0)到(2n,-2)的折线总数。而后者的操作2比操作1要多0-(-2)=2次。即操作1为n-1,操作2为n+1。总数为C(2n,n-1)。

折线法

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值