XOR
Problem Description
XOR is a kind of bit operator, we define that as follow: for two binary base number A and B, let C=A XOR B, then for each bit of C, we can get its value by check the digit of corresponding position in A and B. And for each digit, 1 XOR 1 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 0 XOR 0 = 0. And we simply write this operator as ^, like 3 ^ 1 = 2,4 ^ 3 = 7. XOR is an amazing operator and this is a question about XOR. We can choose several numbers and do XOR operatorion to them one by one, then we get another number. For example, if we choose 2,3 and 4, we can get 2^3^4=5. Now, you are given N numbers, and you can choose some of them(even a single number) to do XOR on them, and you can get many different numbers. Now I want you tell me which number is the K-th smallest number among them.
Input
First line of the input is a single integer T(T<=30), indicates there are T test cases.
For each test case, the first line is an integer N(1<=N<=10000), the number of numbers below. The second line contains N integers (each number is between 1 and 10^18). The third line is a number Q(1<=Q<=10000), the number of queries. The fourth line contains Q numbers(each number is between 1 and 10^18) K1,K2,……KQ.
Output
For each test case,first output Case #C: in a single line,C means the number of the test case which is from 1 to T. Then for each query, you should output a single line contains the Ki-th smallest number in them, if there are less than Ki different numbers, output -1.
Sample Input
2
2
1 2
4
1 2 3 4
3
1 2 3
5
1 2 3 4 5
Sample Output
Case #1:
1
2
3
-1
Case #2:
0
1
2
3
-1
Hint
If you choose a single number, the result you get is the number you choose.
Using long long instead of int because of the result may exceed 2^31-1.
谁能告诉我为什么对在线插入版的线性基进行高斯消元和暴力高斯消元版的得出来的线性基不一样QAQ
应该是写错了吧??总之咱换成暴力高斯消元版的就过了~
思路:
刚学的线性基不用就可惜了~
线性基查找第k大异或结果的方式是:
对线性基内的成员进行高斯消元,使它们表示成只有二进制表示下的最高位为1的形式。
对第k大的查询可以通过分解k的二进制位来达成。
具体做法是:首先初始化答案为0,若k的二进制某一位上有1便异或上对应位置的线性基成员,得到的结果便是答案~
所以这还是模板题……
#include<iostream>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=11233;
ll b[N],n;
struct Linear_Basis
{
int tot,zero;
ll a[N];
void init()
{
tot=zero=0;
memset(a,0,sizeof(a));
}
void insert(ll x)
{
a[++tot]=x;
}
void gauss()
{
tot=zero=0;
for(ll i=b[60];i;i>>=1)
{
int j=tot+1;
while(!(i&a[j])&&j<=n)
j++;
if(j==n+1)
continue;
tot++;
swap(a[tot],a[j]);
for(int k=1;k<=n;k++)
if(k!=tot&&(a[k]&i))
a[k]^=a[tot];
}
if(tot!=n)
zero=1;
}
inline ll query(ll x)
{
x-=(ll)zero;
ll ans=0;
if(!x)
return 0;
if(x>=b[tot])
return -1;
for(int i=1;i<=tot;i++)
if(x&(b[tot-i]))
ans^=a[i];
return ans;
}
}koishi;
inline ll read()
{
ll x=0;
char ch=getchar();
while(ch<'0' || '9'<ch)ch=getchar();
while('0'<=ch && ch<='9')
{
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x;
}
inline void init()
{
b[0]=1;
for(int i=1;i<=60;i++)
b[i]=b[i-1]<<1;
}
int main()
{
init();
int T=read();
for(int t=1;t<=T;t++)
{
printf("Case #%d:\n",t);
koishi.init();
n=read();
for(int i=1;i<=n;i++)
koishi.insert(read());
koishi.gauss();
n=read();
for(int i=1;i<=n;i++)
printf("%lld\n",koishi.query(read()));
}
return 0;
}