[HDU3949]XOR-线性基

XOR

Problem Description

XOR is a kind of bit operator, we define that as follow: for two binary base number A and B, let C=A XOR B, then for each bit of C, we can get its value by check the digit of corresponding position in A and B. And for each digit, 1 XOR 1 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 0 XOR 0 = 0. And we simply write this operator as ^, like 3 ^ 1 = 2,4 ^ 3 = 7. XOR is an amazing operator and this is a question about XOR. We can choose several numbers and do XOR operatorion to them one by one, then we get another number. For example, if we choose 2,3 and 4, we can get 2^3^4=5. Now, you are given N numbers, and you can choose some of them(even a single number) to do XOR on them, and you can get many different numbers. Now I want you tell me which number is the K-th smallest number among them.

Input

First line of the input is a single integer T(T<=30), indicates there are T test cases.
For each test case, the first line is an integer N(1<=N<=10000), the number of numbers below. The second line contains N integers (each number is between 1 and 10^18). The third line is a number Q(1<=Q<=10000), the number of queries. The fourth line contains Q numbers(each number is between 1 and 10^18) K1,K2,……KQ.

Output

For each test case,first output Case #C: in a single line,C means the number of the test case which is from 1 to T. Then for each query, you should output a single line contains the Ki-th smallest number in them, if there are less than Ki different numbers, output -1.

Sample Input

2
2
1 2
4
1 2 3 4
3
1 2 3
5
1 2 3 4 5

Sample Output

Case #1:
1
2
3
-1
Case #2:
0
1
2
3
-1

Hint

If you choose a single number, the result you get is the number you choose.
Using long long instead of int because of the result may exceed 2^31-1.


谁能告诉我为什么对在线插入版的线性基进行高斯消元和暴力高斯消元版的得出来的线性基不一样QAQ
应该是写错了吧??总之咱换成暴力高斯消元版的就过了~

思路:
刚学的线性基不用就可惜了~

线性基查找第k大异或结果的方式是:
对线性基内的成员进行高斯消元,使它们表示成只有二进制表示下的最高位为1的形式。
对第k大的查询可以通过分解k的二进制位来达成。
具体做法是:首先初始化答案为0,若k的二进制某一位上有1便异或上对应位置的线性基成员,得到的结果便是答案~

所以这还是模板题……

#include<iostream>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>

using namespace std;

typedef long long ll;

const int N=11233;

ll b[N],n;
struct Linear_Basis
{
    int tot,zero;
    ll a[N];

    void init()
    {
        tot=zero=0;
        memset(a,0,sizeof(a));
    }

    void insert(ll x)
    {
        a[++tot]=x;
    }

    void gauss()
    {
        tot=zero=0;
        for(ll i=b[60];i;i>>=1)
        {
            int j=tot+1;
            while(!(i&a[j])&&j<=n)
                j++;

            if(j==n+1)
                continue;
            tot++;

            swap(a[tot],a[j]);

            for(int k=1;k<=n;k++)
                if(k!=tot&&(a[k]&i))
                    a[k]^=a[tot];
        }
        if(tot!=n)
            zero=1;
    }

    inline ll query(ll x)
    {
        x-=(ll)zero;
        ll ans=0;

        if(!x)
            return 0;
        if(x>=b[tot])
            return -1;

        for(int i=1;i<=tot;i++)
            if(x&(b[tot-i]))
                ans^=a[i];

        return ans;
    }

}koishi;


inline ll read()
{
    ll x=0;
    char ch=getchar();
    while(ch<'0' || '9'<ch)ch=getchar();
    while('0'<=ch && ch<='9')
    {
        x=(x<<1)+(x<<3)+(ch^48);
        ch=getchar();
    }
    return x;
}

inline void init()
{
    b[0]=1;
    for(int i=1;i<=60;i++)
        b[i]=b[i-1]<<1;
}

int main()
{
    init();

    int T=read();
    for(int t=1;t<=T;t++)
    {
        printf("Case #%d:\n",t);

        koishi.init();
        n=read();
        for(int i=1;i<=n;i++)
            koishi.insert(read());
        koishi.gauss();

        n=read();
        for(int i=1;i<=n;i++)
            printf("%lld\n",koishi.query(read()));
    }

    return 0;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值