[CH弱省胡策R2]TATT
题目描述
四维空间真是美妙。现在有n个四维空间中的点,请求出一条最长的路径,满足任意一维坐标都是单调不降的。 注意路径起点是任意选择的,并且路径与输入顺序无关(路径顺序不一定要满足在输入中是升序)。
路径的长度是经过的点的数量,任意点只能经过一次。
输入输出格式
输入格式:
第一行一个整数n。 接下来n行,每行四个整数ai,bi,ci,di。表示四维坐标
输出格式:
一行一个整数,表示最长路径的长度
输入输出样例
输入样例#1:
4
2 3 33 2333
2 3 33 2333
2 3 33 2333
2 3 33 2333
输出样例#1:
4
说明
测试点编号 n m 特殊说明
1 n≤2000 m≤109
2 n≤
5∗104
m≤8
3−4 同上 m≤105 所有点的第三,四维坐标相同
5−6 同上 同上 所有点的第四维坐标相同
7−8 同上 m≤100 无
9−10 同上 m≤109
所以咱就被这题坑了一晚上……
虽然感觉学到了很多但是咱还是要说:
(╯‵□′)╯︵┻━┻
所以看咱的程序时可能会出现一些莫名其妙的变量、调试信息之类的不要在意~
另外,这题明明是R1的A题啊……
思路:
这次就讲讲咱的思路过程吧。
首先。这显然是K-D树。
然后,这是个DP,四维的最长不下降子序列。
好,于是有了咱的第一个版本的代码:
版本一
然后发现又T又WA……
很显然,这个版本的剪枝太naive了,而且逻辑还有问题,以至于不仅效率和暴力差不多还会WA…….
本身K-D树就是靠剪枝混饭吃的……
那么我们获得了版本二:
版本二
然后又T成了ZZ……
显然这个版本的剪枝并不见得比上个版本高明了多少(事实上有些情况更慢了),但至少能保证正确率……
于是来到版本三:
版本三
然后事实上这个版本的剪枝和上一个版本已经有了巨大差别,尤其是query部分已经足够快了。
但是,modify操作的调用次数迷之巨大……
所以,依然T成ZZ……
然后我们得到了最终版本一:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int N=50009;
int main_d;
inline int minn(int a,int b){if(a<b)return a;return b;}
inline int maxx(int a,int b){if(a>b)return a;return b;}
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0' || '9'<ch){if(ch=='-')f=-1;ch=getchar();}
while('0'<=ch && ch<='9'){x=x*10+(ch^48);ch=getchar();}
return x*f;
}
struct point
{
int coord[4],mn[4],id,l,r,mv,v,f;
int &operator [](int x)
{
return coord[x];
}
void init()
{
for(int i=0;i<=3;i++)
mn[i]=coord[i];
v=mv=f=0;
}
};
bool operator <(point satori,point koishi)
{
return satori[main_d]<koishi[main_d];
}
inline bool ecmp(point a,point b)
{
for(int i=0;i<=3;i++)
if(a[i]!=b[i])
return 0;
return 1;
}
inline bool judge(point satori,point koishi)
{
for(int i=0;i<=3;i++)
if(satori[i]>koishi[i])
return 0;
return 1;
}
inline bool valid(point satori,point koishi)
{
for(int i=0;i<=3;i++)
if(satori.mn[i]>koishi[i])
return 0;
return 1;
}
int p[N];
int sumt[5];
struct k_dimensional_tree
{
int root,maxval;
point t[N];
void update(int x)
{
for(int i=0;i<=3;i++)
t[x].mn[i]=minn(t[x].mn[i],minn(t[t[x].l].mn[i],t[t[x].r].mn[i]));
t[x].mv=maxx(t[x].v,maxx(t[t[x].l].mv,t[t[x].r].mv));
}
void push(int x)
{
t[x].mv=maxx(t[x].v,maxx(t[t[x].l].mv,t[t[x].r].mv));
}
inline int check(int x,point p)
{
if(!x)return x;
int ret=1;
for(int i=0;i<=3;i++)
if(p[i]<t[x].mn[i])
ret=0;
return ret;
}
int biu(int l,int r,int d)
{
main_d=d;
int mid=l+r>>1,nxt;
nth_element(t+l,t+mid,t+r+1);
nxt=d+1;
if(nxt==4)
nxt=1;
t[mid].init();
if(l<mid)
t[mid].l=biu(l,mid-1,nxt),t[t[mid].l].f=mid;
if(mid<r)
t[mid].r=biu(mid+1,r,nxt),t[t[mid].r].f=mid;
update(mid);
return mid;
}
void query(int x,point p,int d)
{
sumt[0]++;
//printf("now in %d\n",x);
if(judge(t[x],p) && maxval<t[x].v)
maxval=t[x].v;
int nxt=d+1;
if(nxt==4)
nxt=1;
if(p[d]>=t[x][d])
{
int a=t[x].l,b=t[x].r;
if(t[a].mv<t[b].mv)
swap(a,b);
if(valid(t[a],p) && t[a].mv>maxval)
query(a,p,nxt);
if(valid(t[b],p) && t[b].mv>maxval)
query(b,p,nxt);
}
else
if(valid(t[t[x].l],p) && t[t[x].l].mv>maxval)
query(t[x].l,p,nxt);
}
void modify(int x,int v)
{
t[x].v=v;
push(x);
while(x=t[x].f)
push(x);
}
}koishi;
bool pcmp(int a,int b)
{
for(int i=0;i<=3;i++)
if(koishi.t[a][i]!=koishi.t[b][i])
return koishi.t[a][i]<koishi.t[b][i];
return 0;
}
int main()
{
int n=read();
for(int i=1;i<=n;i++)
{
p[i]=i;
for(int j=0;j<=3;j++)
koishi.t[i][j]=read();
koishi.t[i].id=i;
}
koishi.root=koishi.biu(1,n,1);
sort(p+1,p+n+1,pcmp);
for(int i=1;i<=n;i++)
{
koishi.maxval=0;
int o=p[i];
//printf("querying %d:%d %d %d %d\n",p[i],koishi.t[o][0],koishi.t[o][1],koishi.t[o][2],koishi.t[o][3]);
koishi.query(koishi.root,koishi.t[p[i]],1);
koishi.modify(p[i],koishi.maxval+1);
//cerr<<(double)clock()/CLOCKS_PER_SEC<<endl;
}
printf("%d\n",koishi.t[koishi.root].mv);
//cerr<<"my"<<sumt[0]<<endl;
return 0;
}
对于随机数据modify操作的次数是之前的二十分之一……
好事实上我们已经完美解决了这题但是……不觉得前两个版本T得很玄学吗?
于是咱又得到了最终版本2:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int N=50009;
int main_d;
inline int minn(int a,int b){if(a<b)return a;return b;}
inline int maxx(int a,int b){if(a>b)return a;return b;}
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0' || '9'<ch){if(ch=='-')f=-1;ch=getchar();}
while('0'<=ch && ch<='9'){x=x*10+(ch^48);ch=getchar();}
return x*f;
}
struct point
{
int coord[4],mn[4],mx[4],l,r,mv,v,ll,rr;
int &operator [](int x)
{
return coord[x];
}
void init()
{
for(int i=0;i<=3;i++)
mn[i]=mx[i]=coord[i];
v=mv=0;
}
};
bool operator <(point satori,point koishi)
{
return satori[main_d]<koishi[main_d];
}
inline bool ecmp(point a,point b)
{
for(int i=0;i<=3;i++)
if(a[i]!=b[i])
return 0;
return 1;
}
inline bool valid(point satori,point koishi)
{
for(int i=1;i<=3;i++)
if(satori.mn[i]>koishi[i])
return 0;
return 1;
}
inline bool judge(point satori,point koishi)
{
for(int i=0;i<=3;i++)
if(satori[i]>koishi[i])
return 0;
return 1;
}
int p[N];
struct k_dimensional_tree
{
int root,maxval;
point t[N];
void update(int x)
{
for(int i=0;i<=3;i++)
{
t[x].mn[i]=minn(t[x].mn[i],minn(t[t[x].l].mn[i],t[t[x].r].mn[i]));
t[x].mx[i]=maxx(t[x].mx[i],maxx(t[t[x].l].mx[i],t[t[x].r].mx[i]));
}
t[x].mv=maxx(t[x].v,maxx(t[t[x].l].mv,t[t[x].r].mv));
}
void push(int x)
{
t[x].mv=maxx(t[x].v,maxx(t[t[x].l].mv,t[t[x].r].mv));
}
int biu(int l,int r,int d)
{
main_d=d;
int mid=l+r>>1,nxt;
nth_element(t+l,t+mid,t+r+1);
nxt=d+1;
if(nxt>3)
nxt=1;
t[mid].init();
t[mid].ll=l;
t[mid].rr=r;
if(l<mid)
t[mid].l=biu(l,mid-1,nxt);
if(mid<r)
t[mid].r=biu(mid+1,r,nxt);
update(mid);
return mid;
}
void query(int x,point p,int d)
{
if(judge(t[x],p) && maxval<t[x].v)
maxval=t[x].v;
int nxt=d+1;
if(nxt==4)
nxt=1;
if(p[d]>=t[x][d])
{
int a=t[x].l,b=t[x].r;
if(t[a].mv<t[b].mv)
swap(a,b);
if(valid(t[a],p) && t[a].mv>maxval)
query(a,p,nxt);
if(valid(t[b],p) && t[b].mv>maxval)
query(b,p,nxt);
}
else
if(valid(t[t[x].l],p) && t[t[x].l].mv>maxval)
query(t[x].l,p,nxt);
}
inline bool in(point satori,point koishi)
{
for(int i=0;i<4;i++)
if(koishi[i]<satori.mn[i] || satori.mx[i]<koishi[i])
return 0;
return 1;
}
bool inr(int satori,int koishi)
{
if(t[satori].ll<=koishi && koishi<=t[satori].rr)
return 1;
return 0;
}
void modify(int x,int p,int v)
{
if(x==p)
{
t[x].v=v;
push(x);
return;
}
if(t[x].l && inr(x,p) && in(t[x],t[p]))
modify(t[x].l,p,v);
if(t[x].r && inr(x,p) && in(t[x],t[p]))
modify(t[x].r,p,v);
push(x);
}
}koishi;
bool pcmp(int a,int b)
{
for(int i=0;i<=3;i++)
if(koishi.t[a][i]!=koishi.t[b][i])
return koishi.t[a][i]<koishi.t[b][i];
return 0;
}
int main()
{
int n=read();
for(int i=1;i<=n;i++)
{
p[i]=i;
for(int j=0;j<=3;j++)
koishi.t[i][j]=read();
}
koishi.root=koishi.biu(1,n,1);
sort(p+1,p+n+1,pcmp);
for(int i=1;i<=n;i++)
{
koishi.maxval=0;
koishi.query(koishi.root,koishi.t[p[i]],1);
koishi.modify(koishi.root,p[i],koishi.maxval+1);
}
printf("%d\n",koishi.t[koishi.root].mv);
return 0;
}
虽然没有上一个版本优(各种意义上),但是能稳过~
可以看到咱只是在modify函数里加了一个判断目标节点编号是否在当前节点区间内就过掉了~
为什么呢?
因为,在前几个版本里,如果出现了目标点与当前查询节点共线的情况,就会同时递归左儿子和右儿子(因为目标节点同时处于左儿子和右儿子所表示的区间内),只要被这么卡上哪怕一次都是很疼的……
不过只是被卡几次的话还是很稳的。
但是,不要忘了这题有4维,任一维共线都会出事,而且虽然根据样例的坐标范围共线的概率还不算大(0~10000的范围几乎无影响),但如果坐标范围很小的话,比如咱造数据时开的0~10……比!暴!力!还!慢!很!多!!!
所以卡一卡这样的情况就可以过了~
另外有个小插曲:标程,采用了一个个插入+替罪羊树重构。洛谷上82分T了……
原因很显然是跟咱的程序一样的……要不是靠替罪羊续秒咱还真不知道标程君怎么A的……
换句话说……如果替罪羊能给咱的程序也续上一秒的话……
神奇的标程君