[BZOJ3295][CQOI2011]动态逆序对-CDQ分治+树状数组

动态逆序对

Description

对于序列A,它的逆序对数定义为满足i < j,且Ai > Aj的数对(i,j)的个数。给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。

Input

输入第一行包含两个整数n和m,即初始元素的个数和删除的元素个数。以下n行每行包含一个1到n之间的正整数,即初始排列。以下m行每行一个正整数,依次为每次删除的元素。

Output

输出包含m行,依次为删除每个元素之前,逆序对的个数。

Sample Input

5 4
1
5
3
4
2
5
1
4
2

Sample Output

5
2
2
1

样例解释

(1,5,3,4,2)(1,3,4,2)(3,4,2)(3,2)(3)。

HINT

N<=100000 M<=50000


继续学习CDQ分治中……
话说这题这真的算是CDQ分治吗……
咱先递归处理左区间和先处理当前层得到的答案一样啊……
(不过事实上很有可能是因为太弱而写得太丑导致发生了神奇的事)


思路:
事实上如果先把所有要删的点删去,然后把所有删除操作变成添加操作,把操作顺序倒过来,得到的答案也是一样的……

那么这就变成了一道三维偏序裸题了。
令三维分别为(x,y,t),x为原位置,y为值,t为加入时间,那么就是求满足(x1 < x,y1 > y2,t1 < t2)的对数了~

那么有两种做法:
1. K-D树乱搞即可。(这玩意还可以轻松兹(zhi)瓷(chi)更高维的偏序)
2. 排序一维,CDQ分治一维,树状数组维护一维。(听说这玩意想要兹瓷高维偏序就要一维一维往下套CDQ分治?)。

咱写的是第二种,第一种懒得写了~
具体方法是,首先对序列按加入时间排序。
然后在CDQ分治内部按在原序列上的编号排序。
接着在每一层CDQ分治内部用树状数组对当前分治序列求一波逆序对,累加答案即可~

用树状数组求逆序对的方法:
正着扫一遍当前分治序列,当前位置原先为左递归区间则加入树状数组,否则加上所有y值比当前位置更大的作为当前时间的答案(query(n)-query(当前y))。
然后反过来扫一遍,原先为左递归区间同上,为右递归区间则加上比当前位置更小的作为答案(query(当前y))。
然后就可以成功得到逆序对数了~

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>

using namespace std;

typedef long long ll;

const int Inf=1e9;
const int N=100009;

inline ll read()
{
    ll x=0;char ch=getchar();
    while(ch<'0' || '9'<ch)ch=getchar();
    while('0'<=ch && ch<='9'){x=x*10+(ch^48);ch=getchar();}
    return x;
}

struct node
{
    int x,y,t;
    bool isr;
}a[N],b[N];

ll bit[N],ans[N];
int id[N],n,m;

inline bool x_cmp(node a,node b){return a.x<b.x;}
inline bool t_cmp(node a,node b){return a.t<b.t;}
inline int lowbit(int x){return x&(-x);}

inline void add(int pos,ll val)
{
    while(pos<=n)
    {
        bit[pos]+=val;
        pos+=lowbit(pos);
    }
}

inline ll query(int pos)
{
    ll ret=0;
    while(pos)
    {
        ret+=bit[pos];
        pos-=lowbit(pos);
    }
    return ret;
}

inline void cdq(int l,int r)
{
    if(l>=r)
        return;

    int mid=l+r>>1;
    int tot=0;

    cdq(l,mid);

    for(int i=l;i<=mid;i++)
    {
        b[++tot]=a[i];
        b[tot].isr=0;
    }

    for(int i=mid+1;i<=r;i++)
    {
        b[++tot]=a[i];
        b[tot].isr=1;
    }

    sort(b+1,b+tot+1,x_cmp);

    for(int i=1;i<=tot;i++)
    {
        if(b[i].isr)
            ans[b[i].t]+=query(n)-query(b[i].y);
        else
            add(b[i].y,1);
    }

    for(int i=1;i<=tot;i++)
        if(!b[i].isr)
            add(b[i].y,-1);

    for(int i=tot;i>=1;i--)
    {
        if(b[i].isr)
            ans[b[i].t]+=query(b[i].y);
        else
            add(b[i].y,1);
    }

    for(int i=1;i<=tot;i++)
        if(!b[i].isr)
            add(b[i].y,-1);

    if(mid<r)
        cdq(mid+1,r);
}

int main()
{
    n=read();
    m=read();

    for(int i=1;i<=n;i++)
    {
        a[i].x=i;
        a[i].y=read();
        id[a[i].y]=i;
    }

    int tim=n;
    for(int i=1,v;i<=m;i++)
        a[id[read()]].t=tim--;

    for(int i=1;i<=n;i++)
        if(!a[i].t)
            a[i].t=tim--;

    sort(a+1,a+n+1,t_cmp);
    cdq(1,n);

    ll anss=0;
    for(int i=1;i<=n;i++)
        anss+=ans[i];
    for(int i=n;i>n-m;i--)
    {
        printf("%lld\n",anss);
        anss-=ans[i];
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值