动态逆序对
Description
对于序列A,它的逆序对数定义为满足i < j,且Ai > Aj的数对(i,j)的个数。给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。
Input
输入第一行包含两个整数n和m,即初始元素的个数和删除的元素个数。以下n行每行包含一个1到n之间的正整数,即初始排列。以下m行每行一个正整数,依次为每次删除的元素。
Output
输出包含m行,依次为删除每个元素之前,逆序对的个数。
Sample Input
5 4
1
5
3
4
2
5
1
4
2
Sample Output
5
2
2
1
样例解释
(1,5,3,4,2)(1,3,4,2)(3,4,2)(3,2)(3)。
HINT
N<=100000 M<=50000
继续学习CDQ分治中……
话说这题这真的算是CDQ分治吗……
咱先递归处理左区间和先处理当前层得到的答案一样啊……
(不过事实上很有可能是因为太弱而写得太丑导致发生了神奇的事)
思路:
事实上如果先把所有要删的点删去,然后把所有删除操作变成添加操作,把操作顺序倒过来,得到的答案也是一样的……
那么这就变成了一道三维偏序裸题了。
令三维分别为(x,y,t),x为原位置,y为值,t为加入时间,那么就是求满足(x1 < x,y1 > y2,t1 < t2)的对数了~
那么有两种做法:
1. K-D树乱搞即可。(这玩意还可以轻松兹(zhi)瓷(chi)更高维的偏序)
2. 排序一维,CDQ分治一维,树状数组维护一维。(听说这玩意想要兹瓷高维偏序就要一维一维往下套CDQ分治?)。
咱写的是第二种,第一种懒得写了~
具体方法是,首先对序列按加入时间排序。
然后在CDQ分治内部按在原序列上的编号排序。
接着在每一层CDQ分治内部用树状数组对当前分治序列求一波逆序对,累加答案即可~
用树状数组求逆序对的方法:
正着扫一遍当前分治序列,当前位置原先为左递归区间则加入树状数组,否则加上所有y值比当前位置更大的作为当前时间的答案(query(n)-query(当前y))。
然后反过来扫一遍,原先为左递归区间同上,为右递归区间则加上比当前位置更小的作为答案(query(当前y))。
然后就可以成功得到逆序对数了~
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;
const int Inf=1e9;
const int N=100009;
inline ll read()
{
ll x=0;char ch=getchar();
while(ch<'0' || '9'<ch)ch=getchar();
while('0'<=ch && ch<='9'){x=x*10+(ch^48);ch=getchar();}
return x;
}
struct node
{
int x,y,t;
bool isr;
}a[N],b[N];
ll bit[N],ans[N];
int id[N],n,m;
inline bool x_cmp(node a,node b){return a.x<b.x;}
inline bool t_cmp(node a,node b){return a.t<b.t;}
inline int lowbit(int x){return x&(-x);}
inline void add(int pos,ll val)
{
while(pos<=n)
{
bit[pos]+=val;
pos+=lowbit(pos);
}
}
inline ll query(int pos)
{
ll ret=0;
while(pos)
{
ret+=bit[pos];
pos-=lowbit(pos);
}
return ret;
}
inline void cdq(int l,int r)
{
if(l>=r)
return;
int mid=l+r>>1;
int tot=0;
cdq(l,mid);
for(int i=l;i<=mid;i++)
{
b[++tot]=a[i];
b[tot].isr=0;
}
for(int i=mid+1;i<=r;i++)
{
b[++tot]=a[i];
b[tot].isr=1;
}
sort(b+1,b+tot+1,x_cmp);
for(int i=1;i<=tot;i++)
{
if(b[i].isr)
ans[b[i].t]+=query(n)-query(b[i].y);
else
add(b[i].y,1);
}
for(int i=1;i<=tot;i++)
if(!b[i].isr)
add(b[i].y,-1);
for(int i=tot;i>=1;i--)
{
if(b[i].isr)
ans[b[i].t]+=query(b[i].y);
else
add(b[i].y,1);
}
for(int i=1;i<=tot;i++)
if(!b[i].isr)
add(b[i].y,-1);
if(mid<r)
cdq(mid+1,r);
}
int main()
{
n=read();
m=read();
for(int i=1;i<=n;i++)
{
a[i].x=i;
a[i].y=read();
id[a[i].y]=i;
}
int tim=n;
for(int i=1,v;i<=m;i++)
a[id[read()]].t=tim--;
for(int i=1;i<=n;i++)
if(!a[i].t)
a[i].t=tim--;
sort(a+1,a+n+1,t_cmp);
cdq(1,n);
ll anss=0;
for(int i=1;i<=n;i++)
anss+=ans[i];
for(int i=n;i>n-m;i--)
{
printf("%lld\n",anss);
anss-=ans[i];
}
return 0;
}