[BZOJ1022][SHOI2008]小约翰的游戏John-反NIM游戏

小约翰的游戏John

Description

  小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取,我们规定取到最后一粒石子的人算输。
  小约翰相当固执,他坚持认为先取的人有很大的优势,所以他总是先取石子,而他的哥哥就聪明多了,他从来没有在游戏中犯过错误。小约翰一怒之前请你来做他的参谋。自然,你应该先写一个程序,预测一下谁将获得游戏的胜利。

Input

  本题的输入由多组数据组成第一行包括一个整数T,表示输入总共有T组数据(T≤500)。每组数据的第一行包括一个整数N(N≤50),表示共有N堆石子,接下来有N个不超过5000的整数,分别表示每堆石子的数目。

Output

  每组数据的输出占一行,每行输出一个单词。如果约翰能赢得比赛,则输出“John”,否则输出“Brother”,请注意单词的大小写。

Sample Input

2
3
3 5 1
1
1

Sample Output

John
Brother


反NIM游戏……
没注意到然后就WA了一次。
咱真是太zz了……


思路:
反NIM游戏。
也就是说,取到最后一个石子的人输。

首先,明确本题每个子游戏SG(x)=石子个数。
那么考虑对方必输的情况,即场上只有一个石子。
然后推广,当所有石子堆均只有一个石子或没有石子时,根据奇偶性即可得出答案。
接着,考虑有2个石子堆相等且数量大于1时,后手必胜,此时两个子游戏异或值为1。
最后,考虑子游戏异或和不为1,那么先手拿走一些使异或和为0,并成为相对后手,就能做到必胜。

综上,当石子堆内石子个数均小于等于1,且异或和为0时先手必胜。
同时异或和不为0且至少一堆石子个数大于1时先手也必胜。
其余情况后手必胜。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>

using namespace std;

inline int read()
{
    int x=0;char ch=getchar();
    while(ch<'0' || '9'<ch)ch=getchar();
    while('0'<=ch && ch<='9')x=x*10+(ch^48),ch=getchar();
    return x;
}

int main()
{
    int T=read();
    while(T--)
    {
        int n=read(),sg=0;
        bool flag=0;

        for(int i=1,u;i<=n;i++)
        {
            u=read();
            if(u>1)flag=1;
            sg^=u;
        }

        if((sg!=0)==flag)
            puts("John");
        else
            puts("Brother");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值