[BZOJ2326][HNOI2011]数学作业-矩阵乘法

数学作业

Description
pic1


突然发现矩阵乘法写得不熟……
(本zz重载运算符不打return调试整整30min)


发现一个很简单的递推式:
f[n]=f[n1](floor(lg10)+1)+n
那么发现这个 floor(lg10)+1 显然会有很长一段相同,所以这个值可以分块。
那么考虑按 floor(lg10) 的值分块,形如10..999,100…999,相同的无需重复计算。
考虑使用矩阵乘法优化这个过程:
floor(lg10)+1=x
那么对于每一块可以构造如下转移矩阵:

x 0 0
1 1 0
0 1 1

直接分块矩阵快速幂即可。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>

using namespace std;

typedef long long ll;
const int N=5;

ll n,md;

struct matrix
{
    ll a[N][N],lena,lenb;

    void e()
    {
        for(int i=0;i<lena;i++)
            a[i][i]=1;
    }


    matrix(int _a,int _b,ll f=-1)
    {
        lena=_a;
        lenb=_b;
        memset(a,0,sizeof(a));
        if(f!=-1)
        {
            e();
            a[0][0]=f;
            a[1][0]=a[2][1]=1;
        }
    }

    matrix operator * (matrix o)
    {
        matrix res(lena,o.lenb);

        for(int i=0;i<lena;i++)
            for(int j=0;j<o.lenb;j++)
                for(int k=0;k<lenb;k++)
                    (res.a[i][j]+=a[i][k]*o.a[k][j]%md)%=md;

        return res;
    }

    void out()
    {
        for(int i=0;i<lena;i++,puts(""))
            for(int j=0;j<lenb;j++)
                printf("%lld ",a[i][j]);
    }
};

inline matrix qpow(matrix a,ll b)
{
    matrix ret(3,3);
    ret.e();
    while(b)
    {
        if(b&1)
            ret=ret*a;
        a=a*a;
        b>>=1;
    }
    return ret;
}

int main()
{
    scanf("%lld%lld",&n,&md);
    matrix ans(3,3);
    ans.e();
    ll i;
    for(i=10;i<=n;i=i*10)
        ans=ans*qpow(matrix(3,3,i%md),i-i/10);
    ans=ans*qpow(matrix(3,3,i%md),n-i/10+1);
    printf("%lld\n",(ans.a[1][0]+ans.a[2][0])%md);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值